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Abstract — This paper describes an algorithm that performs 
3D scanning with the help of 2D Light Detection And Ranging 
(LiDAR) sensor using Robot Operating System (ROS). Using a 
2D 360 degree LiDAR we get a LaserScan data in 2D plane. To 
convert this 2D LiDAR into 3D scanned point cloud data, an 
additional physical third axis (Z axis) is used for collecting 
laserscan data in third dimension. With the help of ROS 
interface, an algorithm is written to convert these laserscan 
data into single point cloud data without any human 
intervention. The LaserScan data and point cloud data can be 
visualized in ROS supported applications such as Rviz (3D 
Visualization Tool) and Gazebo (3D Robotic Simulator). The 
generated point cloud data can be stored as a RosBag file as 
well as in point cloud data format extension (.pcd) which can 
further be utilized in meshing softwares such as MeshLab for 
generating 3D CAD models and exporting STL files of scanned 
objects. 
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I.​ INTRODUCTION 
LiDAR technology has been used in numerous 

applications recently. The LiDAR system design has 
significantly advanced over time, leading to a design with 
very low SWaP (size, weight, and power) requirements. Due 
to LiDAR's light weight and energy efficiency, its use in 
aerial and mobile platforms has grown, making the once 
difficult tasks of mapping and obstacle avoidance possible. 
LiDAR technology has been growing rapidly with the 
hardware miniaturization. LiDAR has a wide range of 
possible uses, including space management in buildings, 
remote sensing, urban planning, and autonomous vehicles. 
LiDAR, which stands for Light Detection and Ranging. In 
order to measure the distance between a target object and the 
light path or between an object and its velocity, LiDAR 
technology uses sensors that highlight light. Accurate 
information on object velocity and distance can be obtained 
from the amount of time it takes for the illuminated light to 
return to its source after reflecting off the target object. The 
accuracy is made possible by light traveling at a constant 
speed through air. The number of laser beams that can be 
focussed on a surface and the technique of surface scanning 
are used to categorize LiDAR technology systems. LiDAR 
systems are available in 1D, 2D, and 3D. In order to gather 
accurate data on the X and Y axes, 2D LiDAR is made to 
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produce a single beam of light in the direction of the target 
object on a horizontal plane. Typically, the LiDAR sensor 
spins in order to gather enough data on both the X and Y 
coordinates. When compared to their 3D equivalents, the 
size of a 2D LiDAR sensor makes it easier to port. The most 
effective 2D LiDAR sensors are for range and detection 
tasks. But how does 3D LiDAR work; unlike its 2D 
equivalent, it makes use of special types of sensors that 
rotate at 360 degrees while sending out several beams of 
light in the direction of a target's vertical plane to collect the 
target's X, Y, and Z coordinates. For mapping and scanning 
of landscapes, 3D technology is appropriate. A 3D LiDAR 
system is made to emit many light beams in order to gather 
more comprehensive object data than a 2D LiDAR system, 
which spins as it directs only one beam of light towards a 
surface. Because 2D LiDAR intends to collect object data 
only on its X and Y axes, the beam of light is only shot 
along the object’s horizontal plane. Conversely, 3D LiDAR 
focuses its beam along its target’s vertical plane to capture 
3-dimensional data on the X, Y, and Z axes. This mode of 
scanning provides more detailed object information. Due to 
the extensive horizontal data it can collect, 2D LiDAR is 
well suited for tasks that call for a lot of ranging and 
detection. On the other hand, because of the amount of data 
that this model can collect along an object's Y-axis, 3D 
LiDAR systems are ideally suited for mapping and scanning 
landscapes. Despite the fact that both LiDAR technologies 
have a variety of industrial uses, 3D LiDAR is more 
expensive than 2D LiDAR. That is in part due to its level of 
accuracy and its capacity to gather precise object 
information. In this paper we report on the use of 2D 
LiDAR. It is a scanning LiDAR that provides 360 degree 
sensing capabilities in all three reference frames. There will 
be an end effector of a robotic arm that has a LiDAR sensor 
installed on it, which spins and detects the distance to 
objects from it continually from various angles. The data 
gathered from this process will be used to create a map of 
the environment's 2D plane. A single point cloud will also 
be created using the same laser scan data (assembled). With 
the help of a6 degrees of freedom (DoF) robotic arm, the 
LiDAR can cover the entire field of view of an object. The 
third Z axis transformations will be made on robotic arm 
feedback with help of the Robot Operating System (ROS) 
framework to transform each laser scan z axis component 
channel in assembling point cloud data. Using an open 
source 3D robotic simulator ‘Gazebo ROS’ we can simulate 
the robotic arm along with the LiDAR scanning in a virtual 
environment created by ourselves. To visualize and assemble 
laser scans into point cloud data, we will use 'Rviz’ which is 
a 3D visualization tool for ROS. Here we can simulate and 
visualize the object being scanned into 3D single point cloud 
data (PCD) live.   



II.​ LITERATURE REVIEW 
Over the past ten years, range sensors like lidars have grown 
in popularity as essential parts of a significant portion of 
autonomous systems. The current decade has seen the most 
research activity and interest in the field of easily accessible 
3D depth sensing sensors. [10] presents a 3D lidar that is 
both lightweight and modest in size. Although its application 
is restricted by a small vertical scan window (40 degrees). It 
is reported in [11] that a constantly spinning lidar placed on 
a micro aerial vehicle (MAV) is capable of measuring range 
in three dimensions. A rotating SICK lidar is employed in 
other applications [12]. [13] describes obtaining 3D 
perception for computing vertical plant profile and tree 
structure. There have been discussions about using 
MEMS-based low resolution 3D lidar for agricultural robots. 
According to ROAMS in [15] a 2D lidar is installed on top 
of a pan, tilt, and rolling setup is used to show a 3D range 
measurement system. A bottleneck in getting a 3D scan of 
nearly 360° FoV in [15] with a hardware setup. One of the 
key pieces of research on creating 3D mapping from 2D 
lidar was given by Raymond et al. in [16]. Rolling the sensor 
for 3D vision is demonstrated to be more advantageous, 
particularly for the Redback robot that could climb stairs, in 
addition to describing the possible rotation about elementary 
coordinate axes. A low-cost, commercially available 3D 
range sensor that performs pitching was presented by 
Morales et al. in [17]. Although the sensor perception results 
in an office environment are shown, the quality of the 
reconstructed depth map is not as good as it could be since 
different-shaped and-sized objects are not present in the 
environment. [18] generates a 3D depth image of the 
surroundings for the application to detect two-way traffic 
and crossings using a rolling SICK LMS 2D lidar. 

III.​ METHODOLOGY/EXPERIMENTAL  
 

A.​ Components/Flowchart 
Workflow to scan any 3D object in robots workspace: 
 

1.​ The LiDAR sensor is mounted on the end-effector 
of the robot arm for scanning. 

2.​ The robot arm will guide the sensor around the 
object to scan any 3D object in its workspace. 

3.​ The LiDAR sensor will generate 2D Laser Scan 
data points on each scan interval. 

4.​ Further using ROS and algorithm built; point cloud 
data will be assembled using a set of these multiple 
laserscan data points on each transform generated 
by the robot arm. 

5.​ And the assembled single point cloud data 
stored/saved can be viewed in any meshing open 
software (ex: Meshlab) and convert it to standard 
model format STL. 

 

 
Figure 1.1: Flowchart of 3D Object Scanning using ROS tools (Gazebo, 

Rviz, Laser Assembler) 
 
For computing hardware we need some edge devices and 
equipment to operate our robot using ROS. So, here’s a list 
of equipment needed to perform the scanning operation. 
 

1.​ Raspberry Pi 4 Model B 
2.​ RPLidar A1M8 
3.​ A computer with an internet connection and the 

ability to flash your microSD card. Here we’ll be 
using a laptop. 

4.​ High-performance microSD card: 32GB minimum 
5.​ MicroSD to SD adapter 
6.​ We will need a monitor, keyboard, and mouse (at 

least for the initial setup) 
7.​ ROS applications use a lot of compute resources 

and the heat sink may not be enough for the heat 
generated. Consider adding a cooling fan to your 
Raspberry Pi 4. 

 
We have used a 2D LiDAR (Light Detection And Ranging) 
sensor for scanning objects. RPLIDAR A1M8 is a renowned 
2D LiDAR sensor available in the market and is based on 
laser triangulation ranging principle and uses high-speed 
vision acquisition and processing hardware developed by 
Slamtec. The system measures distance data more than 8000 
times per second. It is a low cost 360 degree 2D laser 
scanner (LIDAR) solution. The system can perform 360 
degree scan within 12-meter range (6-meter range of 
A1M8-R4 and the bellowing models). The produced 2D 
point cloud data can be used in mapping, localization and 
object/environment modeling. It can be configured up to 10 
hz maximum. As it is based on a laser triangulation 
measurement system, it can work excellently in all kinds of 



indoor and outdoor environments without direct sunlight 
exposure. 
 

 
Figure 1.2: RPLidar A1M8 with connectors to integrate with Linux systems 

 
Table 1.1: Technical specifications of 2D Laser scanner 

Parameter RPLidar A1-M8 

Maximum measurement range(m) 6 

Measurement error (mm) ±50 

Scanning angle (deg) 360 

Angular resolution (deg) <=1 

Scanning time (ms/cycle) 180 

Measurement resolution (mm) <0.5 

Data interface and transfer rate USB 2.0 

Ethernet portSupply voltage (VDC) 5±5% 

Current consumption (mA) 350 

Weight (kg) 0.2 

External dimensions (WxLxH in mm) 90 x 70 x 60 

 
As the sensor has open source libraries to synchronize its 
laser scan data with ROS, we have integrated the 2D 
scanned data in Rviz to visualize the detected objects. 
In our experiment, “Rviz” is adopted as the 3D visualization 
tool. With Rviz, one can  see  what is going on (e.g. robot 
position) or set goal pose for the robot arm from a remote   
place. We used “Gazebo” for simulation purposes, this  
software can communicate with ROS. So, we have tested 
our system in simulation to observe work-ability and safety. 
 

B.​ Synthesis/Algorithm/Design/Method  
The setup contains a robotic arm having 6 joints along with 
an 2D LiDAR mounted on the end effector of this robot arm. 
The design of the robot arm can be done in any Computer 
Aided Design (CAD) software such as CATIA, SolidWorks, 
Fusion 360, etc. After a basic CAD model is made of a 6 
joint robotic arm and LiDAR sensor, make/write the Unified 
Robotics Description Format (URDF) files to use in ROS. 
Assemble individual links with revolute joints and add 
transmissions to each joint for controlling the position of the 
robotic arm. Set joint state publishers for each joint so that to 
use those joint variables for position control of respective 
joints in Gazebo (3D Robotic Simulator) and Rviz (3D 
Visualization Tool). Attach a LiDAR sensor to the end 
effector of the robot arm and add a Gazebo sensor plugin to 
use laser rays in simulation softwares.  
 
B 1.1. Robot arm design: 
The robot arm consists of 6 joints having 1 DoF each in all 
considered as 6 DoF robot arm. The robot arm was designed 
for the purpose of scanning. So, it has capabilities of 
scanning in a greater workspace as compared to load 
capacity. Also, this robot arm model depicts the motion of 
LiDAR sensors for a robust scanning process. One can use 
its own robot arm designed as per requirements.  
There’s a base revolute joint of the robot arm holding the 
power to support the entire weight of other arm links and 
end-effector sensor. The base of the robot must be strong 
enough to hold the position of other linkages, so there’s a 
revolute joint in the Z axis providing 360 viewing capability 
to the robot's field of view. 
The second link of the robot arm provides vertical height 
adjustment features in the Z axis. It has a revolute joint in 
the X axis. This arm has a greater length as compared to 
other linkages so as to reach greater height accordingly. 
There’s another similar joint in the X axis but in the opposite 
direction of the second link. It is basically to compensate for 
the robot's height adjustments to keep the end effector head 
position at 90 degrees from the base whenever required. This 
joint has a short link (third link) so that another link ahead of 
this may have another DoF to produce more workspace 
distribution. 
A fourth link is present for rotation in the Z axis but with 
greater link length similar to the second link. So, as to 
compensate for the height adjustments w.r.t (with respect to) 
the second link arrangement. But as it has a rotation along 
the Z axis, the robot has capabilities to bend forward and 
have a rotational trajectory parallel to the ground plane 
which increases the robots capacity to scan in each layer 
around the object. 
An X axis direction joint is present on top of the fourth link 
to provide the end effector to scan objects in angular motion 
keeping the base joint at a fixed position. It basically refers 
to a tilt scan joint scanning from bottom to top from the 
same position where it started. This fifth link is again a 
shorter length link so as to avoid center of mass issue at 



greater height from ground plane and keep the robot 
dynamics stable. 
Finally, a sixth link is present on the topmost position which 
is also called the end-effector holder. This holder is basically 
used to mount any sensor on it to make the robot use for a 
specific purpose (here the sensor is LiDAR for scanning 
purpose). It has a Z axis revolute joint for additional 
movement. 
In this way, the robot arm is designed having 6 joints with 6 
DoF features for scanning any 3D object in its workspace. 
 
B 1.2. ROS installation and LiDAR setup: 
The most recent and final distribution of ROS 1 is called 
ROS Noetic. Considering that more than half of all robots 
utilize ROS, choosing to adopt it is a wise decision. Noetic 
will be sponsored through May 2025, so we have about five 
years left. 
 
The much more recent Raspberry Pi model, the Raspberry Pi 
4 with 8 GB RAM , provides the best performance yet in 
comparison. It functions virtually as a desktop PC when two 
4K monitors are connected. If we still have older Raspberry 
Pis, we can use this guide for them even if Raspbian has 
recently changed its name to Raspberry Pi OS. When 
searching online, we can substitute "Debian" or "Debian 
Buster" for "Raspberry Pi OS" and the majority of the 
material will still be relevant to your situation even though 
the partial Debian name (Raspbian) has been removed as a 
result of the rebranding. Obviously other edge computing 
devices are present in the market to deal with such heavy 
computation, but considering a low cost and feasible 
compact control systems, Raspberry Pi 4 (Rpi) was used for 
this project scope.  
 

 
Figure 2.1: Raspberry Pi 4 Model B+ 8GB RAM supported Ubuntu/ROS 

 
As you already know, ROS Noetic is mainly developed for 
Ubuntu 20.04, so Ubuntu is the recommended Linux OS for 
installation. You should also first check if your Raspberry Pi 
OS is Debian buster, because Noetic only officially supports 
Buster (Debian 10). To do this, run “lsb_release -sc” in the 
terminal and you should be able to see “buster” in the 
output.  
To install ubuntu/debian on Rpi, follow the steps mentioned 
below: 

 
●​ Download and install Etcher from the website. 
●​ Click Select Image in Etcher and choose the OS 

Image (Download it from internet ubuntu official 
website). 

●​ Attach your SD card to the computer. Etcher will 
select it automatically. 

●​ Click Flash! to write the image file to the SD card. 
●​ When done, remove the SD card, insert it into your 

Raspberry Pi. 
 
We probably already know that we need a few things to get 
started with Raspberry Pi such as a mouse, keyboard, HDMI 
cable etc. 
 

●​ Plug in a mouse and a keyboard. 
●​ Connect the HDMI cable. 
●​ Insert your MicroSD card. 
●​ Plug in your Ethernet cable, if you’re using one. 

 
When everything else is set up, power it on your Raspberry 
Pi by plugging the power cable. After powering on your 
Raspberry Pi, wait for the boot process to complete and then 
finish with the setup process as any other OS system has. 
 
To make sure all dependencies are up to date, run the 
following command “sudo apt-get update”. And if we want 
to get the latest versions of software we have installed 
already, run: 
 

“sudo apt-get upgrade” 
 

Create some memory space to stop running out Rpi 
shutdown when it is out of memory due to heavy computing. ​
Use the “fallocate” program to create a swap file with the 
following command in the terminal “sudo fallocate -l 2G 
/swapfile” allowing 2 GB space. 
Then mark the file as: 
 

 “swap space” by typing: “sudo mkswap /swapfile” 
 

Ask the system to start using our new swap file on each 
reboot/restart using this command: 
 

“sudo swapon /swapfile” 
 

The above command will only last until the next reboot. In 
order to make it permanent, add it to the /etc/fstab file:  
 

“echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab” 
 

Install ROS Desktop on Rpi which has ROS packaging, 
build, and communication libraries and tools like RQT and 
Rviz using this command:  
 

“sudo apt install ros-noetic-desktop” 
 

Then run “sudo apt-get install build-essential”. Make sure to 
source the setup file in bash rc file by typing: 
 

“echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc” 
 

Run “roscore” and check if it is installed successfully. 
 



Connect your RPLiDAR to Raspberry Pi 4 Model B+ using 
Micro USB Cable. Flashing green light indicates normal 
activity of the sensor. Then provide permissions for the 
system to read data from the sensor connected: 
 

“sudo chmod 666 /dev/ttyUSB0”  
 

(here “USB0” is the port name, we can verify it by typing 
“ls /dev/tty*” ). 
After creating a catkin root and source folder for creating 
new ROS packages in your system, install LiDAR ROS 
packages to support RPlidar features in ROS. Clone the ROS 
node for LiDAR in the catkin workspace inside the “src” 
directory using the command: 
 

“sudo git clone  https://github.com/Slamtec/rplidar_ros.git” 
 

Launch the laser scan node provided by this package using a 
launch file: 
 

“roslaunch rplidar_ros rplidar.launch” 
 

This will publish the laser scan data from RPlidar to a topic 
named “/scan”. To visualize it in the Rviz tool, open Rviz 
using: 
 

“rosrun rviz rviz” 
 

and add a laser scan topic from “Add” >> “By topic” >> 
“/scan - LaserScan”. Now as the tool doesn’t know the 
position of LiDAR in the world/map frame of ROS, we need 
to define a transformation (currently be it a static transform) 
between the world frame and lidar frame. As the RPlidar 
published laser scan data to “/scan” topic from “laser” 
frame, we will link the “laser” frame with “world” from 
using the following command in another terminal: 
 

“rosrun tf static_transform_publisher 0 0 0 0 0 0 world 
laser 100” 
 

Here the first three “0” signifies the positional transform “tf” 
i.e., xyz position is 0 units from the world coordinate frame. 
And other three “0” signifies the rotational transform “tf” 
i.e., the “roll pitch yaw” from “world” to “laser” frame. 
Then comes a “fixed frame id” i.e., the “world” frame 
preceding with “child frame id” i.e., the “laser” frame with a 
transform publish rate of “100”. Now, we can see the 2D 
Laser scan data in Rviz with small red points /dots as per 
data provided by the sensor. 
 
B 1.3. URDF/Joints/Transmissions/Plugins in ROS: 
As the transformations made earlier for testing LiDAR 
sensor data in the Rviz tool, we noticed that we have 
transformed the “laser” frame to “world” frame using a 
static transform publisher, which means there will be no 
motion between the two frames (a type of fixed joint). But if 
the LiDAR is in a static position we can only generate point 
cloud data in a 2D plane. So, to add another third axis 
movement, we will need to set up joints and transmissions 
for the robot arm to provide additional DoF for LiDAR 
sensors in 3D space to scan objects and generate/assemble 
point cloud data in 3D. For this, we had setup joints to each 

6 DoF of arm linkages discussed above in the “Robot Arm 
Design” section.  
 
URDF (Unified Robot Description Format) is a file format 
for specifying the geometry and organization of robots in 
ROS. With the help of the URDF model of a robot arm with 
a sensor created in ROS, we can use model dynamics for 
simulation purposes in Rviz and Gazebo. URDF is an 
extension of XML (Extensible Markup Language) language 
wherein we can define Plugins for Gazebo, Joints for links, 
Transmission to every joint, Material, Robot Dynamic 
properties and many more. 
 

 
Figure 2.2: XML Specifications for Robot Model/Sensors/Scenes for URDF 
 
So, firstly create a link named “world” having none of the 
inertial properties because ROS insists us to provide any 
first link to the ground plane without any inertial parameters. 
Then comes the “base_link” of the robot which is fixed to 
the ground plane. To fix the robot base to the world link at 
center we need a joint in URDF to place them together with 
these fixed mates.  
 
The “joint” element in URDF has two attributes: 
name - Specifying a unique name to the respective joint. 
type - Specifying the type of join to be used in between two 
links. Types can be one of the following: 

1.​ revolute — a hinge joint that rotates along the axis 
and has a limited range specified by the upper and 
lower limits. 

2.​ continuous — a continuous hinge joint that rotates 
around the axis and has no upper and lower limits. 

3.​ prismatic — a sliding joint that slides along the 
axis, and has a limited range specified by the upper 
and lower limits. 

4.​ fixed — this is not really a joint because it cannot 
move. All degrees of freedom are locked. This type 
of joint does not require the <axis>, <calibration>, 
<dynamics>, <limits> or <safety_controller>.  

 
The joint element has following elements: 



<origin> - This is the transform from the parent link (world 
link) to the child link (base_link). The joint is located at the 
origin of the child link. 

1.​ xyz - Represents the x, y, z offset. All positions are 
specified in meters. 

2.​ rpy - Represents the rotation around fixed axis: first 
roll around x, then pitch around y and finally yaw 
around z. All angles are specified in radians. 

<parent> (here world) - The name of the link that is the 
parent of this link in the robot tree structure. 
<child> (here base_link) - The name of the link that is the 
child link. 
<axis> (defaults to (1,0,0)) - The joint axis specified in the 
joint frame. This is the axis of rotation for revolute joints, 
the axis of translation for prismatic joints, and the surface 
normal for planar joints. The axis is specified in the joint 
frame of reference. Fixed and floating joints do not use the 
axis field. 

1.​ xyz - Represents the (x, y, z) components of a 
vector. The vector should be normalized. 

<dynamics> - An element specifying physical properties of 
the joint. These values are used to specify modeling 
properties of the joint, particularly useful for simulation. 

1.​ damping ( defaults to 0) - The physical damping 
value of the joint (in newton-seconds per metre 
[N∙s/m] for prismatic joints, in 
newton-meter-seconds per radian [N∙m∙s/rad] for 
revolute joints). 

2.​ friction (defaults to 0) - The physical static friction 
value of the joint (in newtons [N] for prismatic 
joints, in newton-meters [N∙m] for revolute joints). 

<limit> (required only for revolute and prismatic joint) 
1.​ lower (defaults to 0) - An attribute specifying the 

lower joint limit (in radians for revolute joints, in 
meters for prismatic joints). Omit if the joint is 
continuous. 

2.​ upper (defaults to 0) - An attribute specifying the 
upper joint limit (in radians for revolute joints, in 
meters for prismatic joints). Omit if the joint is 
continuous. 

3.​ effort - An attribute for enforcing the maximum 
joint effort (|applied effort| < |effort|). 

4.​ velocity - An attribute for enforcing the maximum 
joint velocity (in radians per second [rad/s] for 
revolute joints, in meters per second [m/s] for 
prismatic joints). 

5.​ floating - this joint allows motion for all 6 degrees 
of freedom. 

6.​ planar - this joint allows motion in a plane 
perpendicular to the axis. 

 

 
Figure 2.3: Joint elements description in URDF models 

 
So, for the first joint between the “world” frame and 
“base_link” frame, we will apply a “fixed” joint and place 
the robot on ground having its base at the center of the world 
coordinate system. Then we will apply accordingly and we 
will apply further joints to respective links as per 
requirement. Their nomenclature and specifications are 
specified below: 
 
Frames: (Link reference => Link name) 
Link World => world 
Link 0 => base_link 
Link 1 => base_support 
Link 2 => base_elbow 
Link 3 => elbow_wrist_1 
Link 4 => wrist_1_2 
Link 5 => wrist_2_3 
Link 6 => wrist_3_end_effector 
Link Lidar => lidar 
 
Joints: (Parent link, Child link => Joint name => Joint 
type) 
world, base_link => base_footprint_joint => fixed 
base_link, base_support => bj_joint => revolute 
base_support, base_elbow => sj_joint => revolute 
base_elbow, elbow_wrist_1 => ej_joint => revolute 
elbow_wrist_1, wrist_1_2 => w1j_joint => revolute 
wrist_1_2, wrist_2_3 => w2j_joint => revolute 
wrist_2_3, wrist_3_end_effector => w3j_joint => revolute 
wrist_3_end_effector, lidar => lidar_joint => fixed 
 
After applying all related joints to respective links and 
sensors, apply transmission to respective joints so that we 
can control robots position, effort and velocity using ROS 
tools as well as while interfacing hardware. The 
transmission element is an extension to the URDF robot 
description model that is used to describe the relationship 
between an actuator and a joint. This allows one to model 
concepts such as gear ratios and parallel linkages. A 
transmission transforms efforts/flow variables such that their 
product - power - remains constant. Multiple actuators may 
be linked to multiple joints through complex transmission. 
 



 
Figure 2.4: Hardware interface controls for Joint Interface 

 
The transmission element has one attribute: 
name: Specifying a unique name to the respective 
transmission. 
The transmission has the following elements: 
<type> (one occurrence) - Specifies the transmission type. 
<joint> (one or more occurrences) - A joint the transmission 
is connected to. The joint is specified by its name attribute, 
and the following sub-elements: 
<hardwareInterface> (one or more occurrences) - Specifies a 
supported joint-space hardware interface. Note that the value 
of this tag should be EffortJointInterface when this 
transmission is loaded in Gazebo and 
hardware_interface/EffortJointInterface when this 
transmission is loaded in RobotHW (Robot hardware). 
<actuator> (one or more occurrences) - An actuator the 
transmission is connected to. The actuator is specified by its 
name attribute, and the following sub-elements: 
<mechanicalReduction> (optional) - Specifies a mechanical 
reduction at the joint/actuator transmission. This tag may not 
be needed for all transmissions. 
<hardwareInterface> (one or more occurrences) - Specifies a 
supported joint-space hardware interface. 
 
So, to operate the robotic arm to desired location, we have to 
control the position of joints. For this we have used 
EffortJointInterface/effort_controllers. The controller 
outputs the desired effort (force/torque) to the Hardware 
Interface/Joint by having any one of these three types of 
inputs: 

1.​ joint_position_controller - Receives a position input 
and sends an effort output, using a PID controller. 

2.​ joint_velocity_controller - Receives a velocity input 
and sends an effort output, using a PID controller. 

3.​ joint_effort_controller - Receives an effort input 
and sends an effort output, just transferring the 
input with the forward_command_controller. 

We have used joint_position_controller to set/input the 
desired position of the respective joint. 
 

 
Figure 2.5: Trackbar joint state controller from robot state publisher 

 
Now these joints are ready for transformation. When we 
load this model in the “Rviz” tool, we can add a “TF” topic 
and see the tf frames initialized for each joint and can 
operate each joint using the “joint_state_publisher_gui” 
trackbar. But to use the same in gazebo, we need to add a 
gazebo plugin in the URDF file so as to link all transforms 
and controllers with robots in “Gazebo” and “Rviz” together. 
Simulating a robot's controllers in Gazebo can be 
accomplished using “ros_control” and a simple Gazebo 
plugin adapter. To use ros_control with our robot, we need to 
add transmission elements to your URDF which we have 
already done before. A Gazebo plugin needs to be added to 
our URDF that actually parses the “transmission” tags and 
loads the appropriate “hardware interfaces” and “controller 
manager”  
 

<gazebo> 
<plugin name = "gazebo_ros_control" filename = 
"libgazebo_ros_control.so"> 
</plugin> 

</gazebo> 
 

By default, without a <robotSimType> tag, 
“gazebo_ros_control” will attempt to get all of the 
information it needs to interface with a ros_control - based 
controller out of the URDF. The default behavior provides 
the following ros_control interfaces: 
 

●​ hardware_interface::JointStateInterface 
●​ hardware_interface::EffortJointInterface 

 
So, the PID gains and controller settings must be saved in a 
yaml file that gets loaded to the param server via the 
roslaunch file. The config folder of your robot package 
should have a “robot_control.yaml” file having 
“joint_state_controller” and “joint_position_controller” for 
respective individual joints mentioned in the “transmission” 
tag. Then in the launch file, make sure to load all the 
specified controllers in the “.yaml” file using a “controller 
spawner” node with a “controller_manager” package. 
 



 
Figure 2.6: ROS Control Plugin for Gazebo with Hardware Interface 

 
Also, if we want to see the LiDAR sensor rays in simulation 
in Gazebo, then add a laser plugin in the same URDF by 
referencing the “lidar” link. The sensor type is “ray” and set 
the parameter “visualize” to “True” if we want to see the 
rays in gazebo else “False” to scan objects but keeping the 
rays invisible as this plugin requires some computing power. 
We can set the number of samples, resolution, minimum 
angle, maximum angle, minimum range, maximum range, 
noise type and many other properties according to our 
required sensor, as this is a custom plugin in ROS. 
 
B 1.4. Laser Assembler: 
Laser rangefinder sensors (such the RPlidar A1M8) typically 
output a stream of scans, with each scan consisting of a set 
of range readings for objects the sensor has identified (in 
polar coordinates). To obtain a 3D perspective of the 
environment, many robotic systems, including PR2's tilting 
laser platform, articulate a laser rangefinder. A larger 3D 
Cartesian coordinate (XYZ) point cloud is created by the 
nodes in the laser assembler package by listening to streams 
of scans. We have interfaced with the laser_assembler 
package via ROS node: 
 

●​ laser_scan_assembler: Assembles a stream of 
sensor_msgs/LaserScan messages into point clouds. 

 
The laser_scan_assembler subscribes to 
sensor_msgs/LaserScan messages on the scan topic. The 
Projector and Transformer process these scans by projecting 
the scan into cartesian space and then transforming it into 
the fixed frame. A sensor_msgs/PointCloud is produced as a 
result, which can then be put to the rolling buffer. On service 
calls, clouds in the rolling buffer. 
 

 
Figure 2.7: Laser Assembler service node data transfer 

 
“assemble_scan” service - An assembler searches its rolling 
buffer for clouds that occur within the desired period when it 
receives an assemble_scan request (begin to end). The larger 
cloud created from these smaller ones is then sent to the 
caller in the service response in the frame determined by the 
fixed_frame option. This is a non-blocking process, and if 
no scans are received within the requested time frame, an 
empty cloud will be returned. As determined by the 
laser_geometry::LaserProjection library, the final cloud will 
have channels with names like intensities, index, distances, 
and stamps. 
 
The Laser Scan Assembler - The laser_scan_assembler 
accumulates laser scans by listening to the appropriate topic 
and accumulating messages in a ring buffer of a specific 
size. When the assemble_scans service is called, the contents 
of the current buffer that fall between two times are 
converted into a single cloud and returned. We have 
remapped our robot’s scanned topic from “/robot/scan” to 
“/scan” as this assembler searches for “/scan” topic to read 
laser scan data. Each single scan is converted into the fixed 
frame when it arrives, and no additional transforms are done 
to the data when the cloud is published. Therefore, we have 
chosen a frame that isn't moving i.e., the “world” frame. 
 

C.​ Pseudo Code/ Testing 
To run any node, before we need to initialize ROS Master. 
“roscore” is a collection of nodes and programs that are 
pre-requisites of a ROS-based system. We must have a 
roscore running in order for ROS nodes to communicate. It 
is launched using the “roscore” command. 
 
We have created a “main.launch” file which first launches an 
empty world followed by setting arguments such as robot 
description, robot URDF file, robot name, robot home 
position (x y z). Then in a common group (namespace = 
robot_arm) we first launch the joint state controllers 
(robot_control.yaml files) which will publish the joint 
variables to “joint_state_controllers”. Followed by setting 
parameters for robot description to get loaded and synced 
with Rviz “RobotModel”. Now, we load our robot arm into 
the Gazebo environment with the help of the “gazebo_ros” 
package by spawning the model into the empty world 
created before with the home position arguments described 
above. Then to load the joint state variables to respective 



joint topics, we load the “spawner” using the 
“controller_manager” package. And finally the 
“robot_state_publisher” node to publish joint states that can 
be utilized by ROS different tools and nodes. 
Launching this “main.launch” file using “roslaunch 
robot_arm_scanner main.launch” will load the model into 
gazebo and set it ready for scanning. 
 

 

 
Figure 3.1: Loaded Robotic Arm URDF model in Gazebo Empty World 

 
The “rostopic list” command lists out all of the active topics 
running by ROS Master. Here we can notice the “/scan” 
topic published by the sensor, “/joint_states” topic published 
by the “robot_state_publisher”, individual joint state 
command topic by “joint_state_controller”, “/tf” and 
“/tf_static” topics of transforms we wrote before. 
You can notice that the joint state publisher have four topics 
for each joint out of which we are mainly interested in: 

1.​ /command: This is to set/provide the desired 
position we want the joint to reach using the 
controller interface we defined in the transmission. 
Input a position value in radians and the joint will 
handle the effort by applying PID values set by us. 
(We had tuned the PID values for smoother and 
quicker operations). 

2.​ /state: This gives position feedback of the joint at 
each instance of time (updates according to joint 
state publisher publish rate). 

 
Using these topics we created a script, a node which 
subscribes to these nodes as feedback and publishes required 
goal positions to respective joint topics and perform the 
scanning operation easily. 

 

 
Figure 3.2: Rqt-Graph to visualize communication between all active nodes 
 
Now as the robot is ready to scan the object we need to 
visualize the detected laser scan data and assemble them into 
point clouds. So, for this we used the Rviz tool which can 
help us visualize laser scan and point cloud data together. 
We launch Rviz using the “rosrun rviz rviz” command. First 
we load the “RobotModel” from the “By Display Type” 
option as soon as the Rviz is launched. And then set the 
fixed frame to “world” frame as we are performing all statics 
transformations w.r.t this frame. Now to visualize the Laser 
scan data, we add the “/Scan => Laserscan” topic in the “By 
Topic” option inside the “Add” tool. To see any object 
detected, insert a block in front of the laser in the gazebo and 
then you can see the reflected scanned laser data in the Rviz 
interface. 
 

 

 
Figure 3.3: 3D environment scanning using RPLidar A1M8 

 
The laser scan data which we get in this step are 2D data 
points. So, if we want to scan a 3D object then we need an 
additional third axis which can be in the format of 3D point 
cloud data. A Point Cloud is a 3D visualization made up of 
thousands or even millions of georeferenced points. 



Therefore, we had assembled all laserscan data of scanning 
operation into a single 3D point cloud  using the 
“laser_assembler” service provided by ROS. We wrote a 
script which collects laser scan data in a time interval 
specified with buffer from “/scan” topic (which is remapped 
from “lidar” frame to “scan” frame in the launch file before) 
and assembles them “PointCloud2” format so that we can 
visualize the data messages published on respective point 
cloud topic in Rviz. Similar to how we added the 
“Laserscan” topic from the “Add” tool, we have to add 
“PointCloud2” topic to visualize the object scanned by a 
robotic arm in gazebo using a script to control robot joints. 
 

 
 

 
Figure 3.4: Simulation of Scanning a Trash-Can model in Rviz/Gazebo 

 

IV.​ RESULTS AND DISCUSSIONS 
On the designed robotic arm - end effector, we apply the 3D 
laser scanner that has been simulated. The sensors are used 
for a variety of navigational functions, including mapping, 
localization, and drivability evaluation. Every time a custom 
3D laser scanner is built, there are slight distortions. 
However, the system must be aware of its precise alignment 
in order to obtain accurate 3d models. Consequently, a 
calibration is required. Although discussing this would go 
beyond the scope of this essay, you can study publications 
on calibration for both spinning 2D and 3D laser scanners. 
Additionally, adding color information to the point cloud to 
obtain an intensity map of objects describing data at various 
surface levels may be valuable for some applications. The 
distortion of the 2D laser scans during a continuous rotation 
of the 2D laser scanner is another crucial point of which one 

should be aware. Combining alignment, the robotic arm's 
rotational speed, and the measurement frequency of the 2D 
laser scanner may result in a straightforward mathematical 
answer. 
 
A rotating 2D laser scanner has several advantages over 
currently available ready-to-use 3D laser scanners, including 
a lower cost, a larger vertical field of view (FOV), and a 
higher vertical resolution achieved by using a lot more 
layers (Velodyne HDL-64/Hokuyo UTM-30LX). While 3D 
laser scanners that can be purchased use several laser beam 
transceivers simultaneously, 2D laserscanners rotate a 1D 
laser beam transceiver to produce this amount of layers. The 
ready-to-use systems can spin significantly faster with 
numerous scans per second by applying multiple distance 
measurements at once. A rotating 2D scanner may take 
several seconds depending on the horizontal resolution, 
however greater update rates are achievable if a lesser 
resolution is suitable, for example, for relocalization in a 
certain map or viewing a specific region of the world. 
Therefore, a system with a spinning 2D laser scanner should 
not move throughout the scanning process; otherwise, if 
there is no precise robot motion estimation, the resulting 3D 
scans are deformed. Therefore, although spinning 2D 
scanners are best suited for perception tasks requiring high 
precision and measurement density like traversability 
evaluation or item recognition, purchasable 3D scanners are 
better suited for extremely dynamic scenarios like 
metropolitan street scenes. They can be used in the 
manufacturing sector to identify flaws, scan items, and 
visualize them for analysis. 

V.​ LIMITATIONS  
We intend to look at the impact of odometry inaccuracies for 
short-range robot motion. Being a robotic arm, it has some 
restrictions regarding vibrational and translational 
inaccuracies while attempting to span intricate curves in 
three-dimensional space. We are therefore developing a 
smooth transition method for motion using appropriate PID 
adjusted settings as well as a mechanical damping factor to 
prevent overshoot at high speeds in order to avoid this issue. 
Another drawback that requires additional study is how the 
sensor's nodding tendency interacts with dynamic 
obstructions. 

VI.​ FUTURE SCOPE 
The laser scan data that is currently combined into 3D point 
clouds using the laser assembler ROS service only offers 
point clouds on a topic rather than producing an STL model 
of it. In order to stay within the scope of this project, we will 
develop an application that can generate 3D CAD models as 
well, support a variety of CAD file formats and be coupled 
with meshing tools like Meshlab. 

VII.​ CONCLUSION 
The primary goal of this project is to create a low-cost 2D 



LiDAR-based 3D object scanning system. The proposed 
system could successfully execute a 2D and 3D scan, hence 
the goal was accomplished by producing 3D point clouds 
from 2D laser scan data. But there are lots of areas where the 
system could be strengthened for use in the future. For 
instance, a better robotic arm might be used to speed up the 
scan and decrease vibration during the scanning test in order 
to decrease noisy data and boost scanning speed, 
respectively. The success of this research demonstrates the 
dependability and precision of a cheap LiDAR sensor for 
doing an object 3D scan. This experiment demonstrates the 
enormous potential of inexpensive LiDAR sensors for 
additional robotic applications, specifically for the visual 
system. 
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