Generating 3D Point Cloud Data

using 2D LiDAR Sensor with ROS
Archit Jain, Mihir Trivedi, Deepak Jaiswal

Department of Research and Development, Kalyani
Strategic Management Services, Pune

Abstract — This paper describes an algorithm that performs
3D scanning with the help of 2D Light Detection And Ranging
(LiDAR) sensor using Robot Operating System (ROS). Using a
2D 360 degree LiDAR we get a LaserScan data in 2D plane. To
convert this 2D LiDAR into 3D scanned point cloud data, an
additional physical third axis (Z axis) is used for collecting
laserscan data in third dimension. With the help of ROS
interface, an algorithm is written to convert these laserscan
data into single point cloud data without any human
intervention. The LaserScan data and point cloud data can be
visualized in ROS supported applications such as Rviz (3D
Visualization Tool) and Gazebo (3D Robotic Simulator). The
generated point cloud data can be stored as a RosBag file as
well as in point cloud data format extension (.pcd) which can
further be utilized in meshing softwares such as MeshLab for
generating 3D CAD models and exporting STL files of scanned
objects.

Keywords — 3D scanning, LiDAR, Mapping, Point-Cloud, ROS

I INTRODUCTION

LiDAR technology has been used in numerous
applications recently. The LiDAR system design has
significantly advanced over time, leading to a design with
very low SWaP (size, weight, and power) requirements. Due
to LiDAR's light weight and energy efficiency, its use in
aerial and mobile platforms has grown, making the once
difficult tasks of mapping and obstacle avoidance possible.
LiDAR technology has been growing rapidly with the
hardware miniaturization. LiDAR has a wide range of
possible uses, including space management in buildings,
remote sensing, urban planning, and autonomous vehicles.
LiDAR, which stands for Light Detection and Ranging. In
order to measure the distance between a target object and the
light path or between an object and its velocity, LIDAR
technology wuses sensors that highlight light. Accurate
information on object velocity and distance can be obtained
from the amount of time it takes for the illuminated light to
return to its source after reflecting off the target object. The
accuracy is made possible by light traveling at a constant
speed through air. The number of laser beams that can be
focussed on a surface and the technique of surface scanning
are used to categorize LiDAR technology systems. LiDAR
systems are available in 1D, 2D, and 3D. In order to gather
accurate data on the X and Y axes, 2D LiDAR is made to

produce a single beam of light in the direction of the target
object on a horizontal plane. Typically, the LiDAR sensor
spins in order to gather enough data on both the X and Y
coordinates. When compared to their 3D equivalents, the
size of a 2D LiDAR sensor makes it easier to port. The most
effective 2D LiDAR sensors are for range and detection
tasks. But how does 3D LiDAR work; unlike its 2D
equivalent, it makes use of special types of sensors that
rotate at 360 degrees while sending out several beams of
light in the direction of a target's vertical plane to collect the
target's X, Y, and Z coordinates. For mapping and scanning
of landscapes, 3D technology is appropriate. A 3D LiDAR
system is made to emit many light beams in order to gather
more comprehensive object data than a 2D LiDAR system,
which spins as it directs only one beam of light towards a
surface. Because 2D LiDAR intends to collect object data
only on its X and Y axes, the beam of light is only shot
along the object’s horizontal plane. Conversely, 3D LiDAR
focuses its beam along its target’s vertical plane to capture
3-dimensional data on the X, Y, and Z axes. This mode of
scanning provides more detailed object information. Due to
the extensive horizontal data it can collect, 2D LiDAR is
well suited for tasks that call for a lot of ranging and
detection. On the other hand, because of the amount of data
that this model can collect along an object's Y-axis, 3D
LiDAR systems are ideally suited for mapping and scanning
landscapes. Despite the fact that both LiDAR technologies
have a variety of industrial uses, 3D LiDAR is more
expensive than 2D LiDAR. That is in part due to its level of
accuracy and its capacity to gather precise object
information. In this paper we report on the use of 2D
LiDAR. It is a scanning LiDAR that provides 360 degree
sensing capabilities in all three reference frames. There will
be an end effector of a robotic arm that has a LIDAR sensor
installed on it, which spins and detects the distance to
objects from it continually from various angles. The data
gathered from this process will be used to create a map of
the environment's 2D plane. A single point cloud will also
be created using the same laser scan data (assembled). With
the help of a6 degrees of freedom (DoF) robotic arm, the
LiDAR can cover the entire field of view of an object. The
third Z axis transformations will be made on robotic arm
feedback with help of the Robot Operating System (ROS)
framework to transform each laser scan z axis component
channel in assembling point cloud data. Using an open
source 3D robotic simulator ‘Gazebo ROS’ we can simulate
the robotic arm along with the LIDAR scanning in a virtual
environment created by ourselves. To visualize and assemble
laser scans into point cloud data, we will use 'Rviz’ which is
a 3D visualization tool for ROS. Here we can simulate and
visualize the object being scanned into 3D single point cloud
data (PCD) live.

II. LITERATURE REVIEW

Over the past ten years, range sensors like lidars have grown
in popularity as essential parts of a significant portion of
autonomous systems. The current decade has seen the most
research activity and interest in the field of easily accessible
3D depth sensing sensors. [10] presents a 3D lidar that is
both lightweight and modest in size. Although its application
is restricted by a small vertical scan window (40 degrees). It
is reported in [11] that a constantly spinning lidar placed on
a micro aerial vehicle (MAV) is capable of measuring range
in three dimensions. A rotating SICK lidar is employed in
other applications [12]. [13] describes obtaining 3D
perception for computing vertical plant profile and tree
structure. There have been discussions about using
MEMS-based low resolution 3D lidar for agricultural robots.
According to ROAMS in [15] a 2D lidar is installed on top
of a pan, tilt, and rolling setup is used to show a 3D range
measurement system. A bottleneck in getting a 3D scan of
nearly 360° FoV in [15] with a hardware setup. One of the
key pieces of research on creating 3D mapping from 2D
lidar was given by Raymond et al. in [16]. Rolling the sensor
for 3D vision is demonstrated to be more advantageous,
particularly for the Redback robot that could climb stairs, in
addition to describing the possible rotation about elementary
coordinate axes. A low-cost, commercially available 3D
range sensor that performs pitching was presented by
Morales et al. in [17]. Although the sensor perception results
in an office environment are shown, the quality of the
reconstructed depth map is not as good as it could be since
different-shaped and-sized objects are not present in the
environment. [18] generates a 3D depth image of the
surroundings for the application to detect two-way traffic
and crossings using a rolling SICK LMS 2D lidar.

I11. METHODOLOGY/EXPERIMENTAL

A. Components/Flowchart

Workflow to scan any 3D object in robots workspace:

1. The LiDAR sensor is mounted on the end-effector
of the robot arm for scanning.

2. The robot arm will guide the sensor around the
object to scan any 3D object in its workspace.

3. The LiDAR sensor will generate 2D Laser Scan
data points on each scan interval.

4. Further using ROS and algorithm built; point cloud
data will be assembled using a set of these multiple
laserscan data points on each transform generated
by the robot arm.

5. And the assembled single point cloud data
stored/saved can be viewed in any meshing open
software (ex: Meshlab) and convert it to standard
model format STL.

Start

, i x

Launch 2D LIDAR sensor data Launch Laser Launch Gazebo
from RPLidar in ROS Assembler Service (with Empty World)

. !

Reantlasciscar) Load the Robatic Arm
Publishes datato topic to /scan fopic URDF model in Gazebo
/scan topic i ¢

Run Laser assembler node T e s

i robot description using

Transform Laser frame to gazebo_ros_control
Lidar frame using Publishes Point
state_transform_publisher i ame
topic /PointCloud2

Jj } » Robot State Publisher

Launch Rviz «

Visualize

< Export Point Cloud data
Laser Scan / Point Cloud / TF data

from respective topic

!

End

Figure 1.1: Flowchart of 3D Object Scanning using ROS tools (Gazebo,
Rviz, Laser Assembler)

For computing hardware we need some edge devices and
equipment to operate our robot using ROS. So, here’s a list
of equipment needed to perform the scanning operation.

1. Raspberry Pi 4 Model B

2. RPLidar A1M8

3. A computer with an internet connection and the
ability to flash your microSD card. Here we’ll be
using a laptop.

4. High-performance microSD card: 32GB minimum

MicroSD to SD adapter

6. We will need a monitor, keyboard, and mouse (at
least for the initial setup)

7. ROS applications use a lot of compute resources
and the heat sink may not be enough for the heat
generated. Consider adding a cooling fan to your
Raspberry Pi 4.

b

We have used a 2D LiDAR (Light Detection And Ranging)
sensor for scanning objects. RPLIDAR A1MS is a renowned
2D LiDAR sensor available in the market and is based on
laser triangulation ranging principle and uses high-speed
vision acquisition and processing hardware developed by
Slamtec. The system measures distance data more than 8000
times per second. It is a low cost 360 degree 2D laser
scanner (LIDAR) solution. The system can perform 360
degree scan within 12-meter range (6-meter range of
AIMS8-R4 and the bellowing models). The produced 2D
point cloud data can be used in mapping, localization and
object/environment modeling. It can be configured up to 10
hz maximum. As it is based on a laser triangulation
measurement system, it can work excellently in all kinds of

indoor and outdoor environments without direct sunlight
exposure.

Figure 1.2: RPLidar AIMS with connectors to integrate with Linux systems

Table 1.1: Technical specifications of 2D Laser scanner

Parameter RPLidar AI-M8
Maximum measurement range(m) 6
Measurement error (mm) +50
Scanning angle (deg) 360
Angular resolution (deg) <=1
Scanning time (ms/cycle) 180
Measurement resolution (mm) <0.5

Data interface and transfer rate USB 2.0
Ethernet portSupply voltage (VDC) 5+5%
Current consumption (mA) 350

Weight (kg) 0.2

External dimensions (WxLxH in mm) | 90 x 70 x 60

As the sensor has open source libraries to synchronize its
laser scan data with ROS, we have integrated the 2D
scanned data in Rviz to visualize the detected objects.

In our experiment, “Rviz” is adopted as the 3D visualization
tool. With Rviz, one can see what is going on (e.g. robot
position) or set goal pose for the robot arm from a remote
place. We used “Gazebo” for simulation purposes, this
software can communicate with ROS. So, we have tested
our system in simulation to observe work-ability and safety.

B. Synthesis/Algorithm/Design/Method

The setup contains a robotic arm having 6 joints along with
an 2D LiDAR mounted on the end effector of this robot arm.
The design of the robot arm can be done in any Computer
Aided Design (CAD) software such as CATIA, SolidWorks,
Fusion 360, etc. After a basic CAD model is made of a 6
joint robotic arm and LiDAR sensor, make/write the Unified
Robotics Description Format (URDF) files to use in ROS.
Assemble individual links with revolute joints and add
transmissions to each joint for controlling the position of the
robotic arm. Set joint state publishers for each joint so that to
use those joint variables for position control of respective
joints in Gazebo (3D Robotic Simulator) and Rviz (3D
Visualization Tool). Attach a LiDAR sensor to the end
effector of the robot arm and add a Gazebo sensor plugin to
use laser rays in simulation softwares.

B 1.1. Robot arm design:

The robot arm consists of 6 joints having 1 DoF each in all
considered as 6 DoF robot arm. The robot arm was designed
for the purpose of scanning. So, it has capabilities of
scanning in a greater workspace as compared to load
capacity. Also, this robot arm model depicts the motion of
LiDAR sensors for a robust scanning process. One can use
its own robot arm designed as per requirements.

There’s a base revolute joint of the robot arm holding the
power to support the entire weight of other arm links and
end-effector sensor. The base of the robot must be strong
enough to hold the position of other linkages, so there’s a
revolute joint in the Z axis providing 360 viewing capability
to the robot's field of view.

The second link of the robot arm provides vertical height
adjustment features in the Z axis. It has a revolute joint in
the X axis. This arm has a greater length as compared to
other linkages so as to reach greater height accordingly.
There’s another similar joint in the X axis but in the opposite
direction of the second link. It is basically to compensate for
the robot's height adjustments to keep the end effector head
position at 90 degrees from the base whenever required. This
joint has a short link (third link) so that another link ahead of
this may have another DoF to produce more workspace
distribution.

A fourth link is present for rotation in the Z axis but with
greater link length similar to the second link. So, as to
compensate for the height adjustments w.r.t (with respect to)
the second link arrangement. But as it has a rotation along
the Z axis, the robot has capabilities to bend forward and
have a rotational trajectory parallel to the ground plane
which increases the robots capacity to scan in each layer
around the object.

An X axis direction joint is present on top of the fourth link
to provide the end effector to scan objects in angular motion
keeping the base joint at a fixed position. It basically refers
to a tilt scan joint scanning from bottom to top from the
same position where it started. This fifth link is again a
shorter length link so as to avoid center of mass issue at

greater height from ground plane and keep the robot
dynamics stable.

Finally, a sixth link is present on the topmost position which
is also called the end-effector holder. This holder is basically
used to mount any sensor on it to make the robot use for a
specific purpose (here the sensor is LiDAR for scanning
purpose). It has a Z axis revolute joint for additional
movement.

In this way, the robot arm is designed having 6 joints with 6
DoF features for scanning any 3D object in its workspace.

B 1.2. ROS installation and LiDAR setup:

The most recent and final distribution of ROS 1 is called
ROS Noetic. Considering that more than half of all robots
utilize ROS, choosing to adopt it is a wise decision. Noetic
will be sponsored through May 2025, so we have about five
years left.

The much more recent Raspberry Pi model, the Raspberry Pi
4 with 8 GB RAM , provides the best performance yet in
comparison. It functions virtually as a desktop PC when two
4K monitors are connected. If we still have older Raspberry
Pis, we can use this guide for them even if Raspbian has
recently changed its name to Raspberry Pi OS. When
searching online, we can substitute "Debian" or "Debian
Buster" for "Raspberry Pi OS" and the majority of the
material will still be relevant to your situation even though
the partial Debian name (Raspbian) has been removed as a
result of the rebranding. Obviously other edge computing
devices are present in the market to deal with such heavy
computation, but considering a low cost and feasible
compact control systems, Raspberry Pi 4 (Rpi) was used for
this project scope.

) RasphberryPi

ubuntu®
$:ROS

Figure 2.1: Raspberry Pi 4 Model B+ 8GB RAM supported Ubuntu/ROS

As you already know, ROS Noetic is mainly developed for
Ubuntu 20.04, so Ubuntu is the recommended Linux OS for
installation. You should also first check if your Raspberry Pi
OS is Debian buster, because Noetic only officially supports
Buster (Debian 10). To do this, run “Isb_release -sc” in the
terminal and you should be able to see “buster” in the
output.

To install ubuntu/debian on Rpi, follow the steps mentioned
below:

e Download and install Etcher from the website.

e C(Click Select Image in Etcher and choose the OS
Image (Download it from internet ubuntu official
website).

e Attach your SD card to the computer. Etcher will
select it automatically.

e Click Flash! to write the image file to the SD card.

e When done, remove the SD card, insert it into your
Raspberry Pi.

We probably already know that we need a few things to get
started with Raspberry Pi such as a mouse, keyboard, HDMI
cable etc.

Plug in a mouse and a keyboard.

Connect the HDMI cable.

Insert your MicroSD card.

Plug in your Ethernet cable, if you’re using one.

When everything else is set up, power it on your Raspberry
Pi by plugging the power cable. After powering on your
Raspberry Pi, wait for the boot process to complete and then
finish with the setup process as any other OS system has.

To make sure all dependencies are up to date, run the
following command “sudo apt-get update”. And if we want
to get the latest versions of software we have installed
already, run:

“sudo apt-get upgrade”

Create some memory space to stop running out Rpi
shutdown when it is out of memory due to heavy computing.
Use the “fallocate” program to create a swap file with the
following command in the terminal “sudo fallocate -1 2G
/swapfile” allowing 2 GB space.

Then mark the file as:

“swap space” by typing: “sudo mkswap /swapfile”

Ask the system to start using our new swap file on each
reboot/restart using this command:

“sudo swapon /swapfile”

The above command will only last until the next reboot. In
order to make it permanent, add it to the /etc/fstab file:

“echo "/swapfile none swap sw 0 0" | sudo tee -a /etc/fstab”

Install ROS Desktop on Rpi which has ROS packaging,
build, and communication libraries and tools like RQT and
Rviz using this command:

“sudo apt install ros-noetic-desktop”

Then run “sudo apt-get install build-essential”. Make sure to
source the setup file in bash rc file by typing:

“echo "source /opt/ros/noetic/setup.bash" >> ~/.bashrc”

Run “roscore” and check if it is installed successfully.

Connect your RPLiDAR to Raspberry Pi 4 Model B+ using
Micro USB Cable. Flashing green light indicates normal
activity of the sensor. Then provide permissions for the
system to read data from the sensor connected:

“sudo chmod 666 /dev/ttyUSB0”

(here “USBO0” is the port name, we can verify it by typing
“Is /dev/tty*”).

After creating a catkin root and source folder for creating
new ROS packages in your system, install LIDAR ROS
packages to support RPlidar features in ROS. Clone the ROS
node for LiDAR in the catkin workspace inside the “src”
directory using the command:

“sudo git clone https.//github.com/Slamtec/rplidar _ros.git”

Launch the laser scan node provided by this package using a
launch file:

“roslaunch rplidar_ros rplidarlaunch”

This will publish the laser scan data from RPlidar to a topic
named “/scan”. To visualize it in the Rviz tool, open Rviz
using:

“rosrun rviz rviz”’

and add a laser scan topic from “Add” >> “By topic” >>
“/scan - LaserScan”. Now as the tool doesn’t know the
position of LiDAR in the world/map frame of ROS, we need
to define a transformation (currently be it a static transform)
between the world frame and lidar frame. As the RPlidar
published laser scan data to “/scan” topic from “laser”
frame, we will link the “laser” frame with “world” from
using the following command in another terminal:

“rosrun tf static_transform_publisher 0 0 0 0 0 0 world
laser 100~

Here the first three “0” signifies the positional transform “tf”
i.e., Xyz position is 0 units from the world coordinate frame.
And other three “0” signifies the rotational transform “tf”
i.e., the “roll pitch yaw” from “world” to “laser” frame.
Then comes a “fixed frame id” i.e., the “world” frame
preceding with “child frame id” i.e., the “laser” frame with a
transform publish rate of “100”. Now, we can see the 2D
Laser scan data in Rviz with small red points /dots as per
data provided by the sensor.

B 1.3. URDF/Joints/Transmissions/Plugins in ROS:

As the transformations made earlier for testing LiDAR
sensor data in the Rviz tool, we noticed that we have
transformed the “laser” frame to “world” frame using a
static transform publisher, which means there will be no
motion between the two frames (a type of fixed joint). But if
the LiDAR is in a static position we can only generate point
cloud data in a 2D plane. So, to add another third axis
movement, we will need to set up joints and transmissions
for the robot arm to provide additional DoF for LiDAR
sensors in 3D space to scan objects and generate/assemble
point cloud data in 3D. For this, we had setup joints to each

6 DoF of arm linkages discussed above in the “Robot Arm
Design” section.

URDF (Unified Robot Description Format) is a file format
for specifying the geometry and organization of robots in
ROS. With the help of the URDF model of a robot arm with
a sensor created in ROS, we can use model dynamics for
simulation purposes in Rviz and Gazebo. URDF is an
extension of XML (Extensible Markup Language) language
wherein we can define Plugins for Gazebo, Joints for links,
Transmission to every joint, Material, Robot Dynamic
properties and many more.

$#ROS URDF

Universal Robotic Description Format

Your Robotic Application

|

urdf urdfdom_headers
Wrapper ROS pkg for parser Data sirucures o a parsed URDF
Plugins and urafdom,_headers n header fles

urdf_parser_plugin
Base iass intertace or parsers

sdformat

“Simulation” Descriptior
(SDF) used by Gazebo

urdfdom
ultes URDF data structres
by parsing URDF files

collada_parser

Populates URDF data st

-

DF
by parsing Collada files

collada-dom
‘Stand-alone interchange format

Available Conversions:
urdf — collada for interactive 3D applications

urdt - sdt

lan Mcldahon | Updated May 7, 2020 ROS Package || Upstream (debian pkg)
Source: urddocumertationurdf_dagram.odg

Figure 2.2: XML Specifications for Robot Model/Sensors/Scenes for URDF

So, firstly create a link named “world” having none of the
inertial properties because ROS insists us to provide any
first link to the ground plane without any inertial parameters.
Then comes the “base link” of the robot which is fixed to
the ground plane. To fix the robot base to the world link at
center we need a joint in URDF to place them together with
these fixed mates.

The “joint” element in URDF has two attributes:

name - Specifying a unique name to the respective joint.
type - Specifying the type of join to be used in between two
links. Types can be one of the following:

1. revolute — a hinge joint that rotates along the axis
and has a limited range specified by the upper and
lower limits.

2. continuous — a continuous hinge joint that rotates
around the axis and has no upper and lower limits.

3. prismatic — a sliding joint that slides along the
axis, and has a limited range specified by the upper
and lower limits.

4. fixed — this is not really a joint because it cannot
move. All degrees of freedom are locked. This type
of joint does not require the <axis>, <calibration>,
<dynamics>, <limits> or <safety controller>.

The joint element has following elements:

<origin> - This is the transform from the parent link (world
link) to the child link (base link). The joint is located at the
origin of the child link.

1. xyz - Represents the X, y, z offset. All positions are
specified in meters.

2. r1py - Represents the rotation around fixed axis: first
roll around x, then pitch around y and finally yaw
around z. All angles are specified in radians.

<parent> (here world) - The name of the link that is the
parent of this link in the robot tree structure.

<child> (here base_link) - The name of the link that is the
child link.

<axis> (defaults to (1,0,0)) - The joint axis specified in the
joint frame. This is the axis of rotation for revolute joints,
the axis of translation for prismatic joints, and the surface
normal for planar joints. The axis is specified in the joint
frame of reference. Fixed and floating joints do not use the
axis field.

1. xyz - Represents the (X, y, z) components of a
vector. The vector should be normalized.

<dynamics> - An element specifying physical properties of
the joint. These values are used to specify modeling
properties of the joint, particularly useful for simulation.

1. damping (defaults to 0) - The physical damping
value of the joint (in newton-seconds per metre

[N-s/m] for prismatic joints, in
newton-meter-seconds per radian [N-m-s/rad] for
revolute joints).

2. friction (defaults to 0) - The physical static friction
value of the joint (in newtons [N] for prismatic
joints, in newton-meters [N-m] for revolute joints).

<limit> (required only for revolute and prismatic joint)

1. lower (defaults to 0) - An attribute specifying the
lower joint limit (in radians for revolute joints, in
meters for prismatic joints). Omit if the joint is
continuous.

2. upper (defaults to 0) - An attribute specifying the
upper joint limit (in radians for revolute joints, in
meters for prismatic joints). Omit if the joint is
continuous.

3. effort - An attribute for enforcing the maximum
joint effort (Japplied effort| < |effort|).

4. velocity - An attribute for enforcing the maximum
joint velocity (in radians per second [rad/s] for
revolute joints, in meters per second [m/s] for
prismatic joints).

5. floating - this joint allows motion for all 6 degrees
of freedom.

6. planar - this joint allows motion in a plane
perpendicular to the axis.

N\
Child frap@ ‘(\\\
Joint axis = Joint frameC

in joint frame

L
<
S
o

/o/ht

P rG/?f

Parentframe

Figure 2.3: Joint elements description in URDF models

So, for the first joint between the “world” frame and
“base_link” frame, we will apply a “fixed” joint and place
the robot on ground having its base at the center of the world
coordinate system. Then we will apply accordingly and we
will apply further joints to respective links as per
requirement. Their nomenclature and specifications are
specified below:

Frames: (Link reference => Link name)
Link World => world

Link 0 => base_link

Link 1 => base support

Link 2 => base _elbow

Link 3 => elbow_wrist 1

Link 4 => wrist 1 2

Link 5 =>wrist 2 3

Link 6 => wrist 3 end_effector

Link Lidar => lidar

Joints: (Parent link, Child link => Joint name => Joint
type)

world, base_link => base footprint_joint => fixed

base link, base support =>bj joint => revolute
base_support, base_elbow =>sj joint => revolute

base elbow, elbow wrist 1 =>ej joint => revolute
elbow_wrist 1, wrist 1 2 =>wlj_ joint => revolute
wrist 1 2, wrist 2 3 =>w2j joint =>revolute

wrist 2 3, wrist 3 end effector => w3j joint => revolute
wrist 3 end effector, lidar => lidar_joint => fixed

After applying all related joints to respective links and
sensors, apply transmission to respective joints so that we
can control robots position, effort and velocity using ROS
tools as well as while interfacing hardware. The
transmission element is an extension to the URDF robot
description model that is used to describe the relationship
between an actuator and a joint. This allows one to model
concepts such as gear ratios and parallel linkages. A
transmission transforms efforts/flow variables such that their
product - power - remains constant. Multiple actuators may
be linked to multiple joints through complex transmission.

Controller
e.g. joint_position_controller
Dynamically alocated from loaded controller plugin

£q.PID
Controller

$#2ROS control

Data flow of controllers

st contiolers_ o | Controller Manager

_Toad controller | | oags, unioads and calls
urload_controllery. | updates to controllers

switch

__lrioad_controlerg, i
contioler, 2
ontrol 2
* N N
Controller 1 Robot Commands Robot States
.. joint efforts - N.m g joint states - radians
hardware |interface::RobotHW

!I— -
! -

¢ Cometmompom |

e |

ate!
— [==] =
Actustor Efforts Mechanism States
eg. curent . encoder ficks

Communication Bus
eg. Eiherca,
Seril, USB

1 oint Limits i
| Erforce limis (optona) |

: Efiort Transmissions |

Real Robot

Embedded Controllers
4. PID loop to folaw
fort setpain

Serves, et

| Actuators ‘

Encoders
Sensars on e real
robot

Figure 2.4: Hardware interface controls for Joint Interface

The transmission element has one attribute:

name: Specifying a unique name to the respective
transmission.

The transmission has the following elements:

<type> (one occurrence) - Specifies the transmission type.
<joint> (one or more occurrences) - A joint the transmission
is connected to. The joint is specified by its name attribute,
and the following sub-elements:

<hardwarelnterface> (one or more occurrences) - Specifies a
supported joint-space hardware interface. Note that the value
of this tag should be Effortointinterface when this
transmission is loaded in Gazebo and
hardware _interface/EffortJointInterface when this
transmission is loaded in RobotHW (Robot hardware).
<actuator> (one or more occurrences) - An actuator the
transmission is connected to. The actuator is specified by its
name attribute, and the following sub-elements:
<mechanicalReduction> (optional) - Specifies a mechanical
reduction at the joint/actuator transmission. This tag may not
be needed for all transmissions.

<hardwarelnterface> (one or more occurrences) - Specifies a
supported joint-space hardware interface.

So, to operate the robotic arm to desired location, we have to
control the position of joints. For this we have used
EffortJointInterface/effort controllers. The controller
outputs the desired effort (force/torque) to the Hardware
Interface/Joint by having any one of these three types of
inputs:

1. joint_position_controller - Receives a position input
and sends an effort output, using a PID controller.

2. joint_velocity controller - Receives a velocity input
and sends an effort output, using a PID controller.

3. joint_effort controller - Receives an effort input
and sends an effort output, just transferring the
input with the forward command_controller.

We have used joint position_controller to set/input the
desired position of the respective joint.

Joint Controller

joint_A

joint B

joint C

Figure 2.5: Trackbar joint state controller from robot state publisher

Now these joints are ready for transformation. When we
load this model in the “Rviz” tool, we can add a “TF” topic
and see the tf frames initialized for each joint and can
operate each joint using the “joint state publisher gui”
trackbar. But to use the same in gazebo, we need to add a
gazebo plugin in the URDF file so as to link all transforms
and controllers with robots in “Gazebo” and “Rviz” together.
Simulating a robot's controllers in Gazebo can be
accomplished using “ros_control” and a simple Gazebo
plugin adapter. To use ros_control with our robot, we need to
add transmission elements to your URDF which we have
already done before. A Gazebo plugin needs to be added to
our URDF that actually parses the “transmission” tags and
loads the appropriate “hardware interfaces” and “controller
manager”

<gazebo>
<plugin name = "gazebo ros control" filename =
"libgazebo_ros control.so">
</plugin>

</gazebo>

By default, without a <robotSimType> tag,
“gazebo ros control” will attempt to get all of the
information it needs to interface with a ros_control - based
controller out of the URDF. The default behavior provides
the following ros_control interfaces:

e hardware interface::JointStateInterface
e hardware interface::EffortJointInterface

So, the PID gains and controller settings must be saved in a
yaml file that gets loaded to the param server via the
roslaunch file. The config folder of your robot package
should have a “robot control.yaml” file having
“joint_state controller” and “joint position controller” for
respective individual joints mentioned in the “transmission”
tag. Then in the launch file, make sure to load all the
specified controllers in the “.yaml” file using a “controller
spawner” node with a “controller manager” package.

gGAZEBO + EEEROS + ros_control

Gazebo Hardware Reality
Simuator Realty
wiiteHW() .
- RobotHW tum)
Effort ptefaces
aitwa

Simulation

hardware interface::RobotHWSim
Provides Positon, Velocty, and Effort Interfaces
between Gazebo and ros_control

Haraware Resourc ntertce Laye,§ SRR

Joint Siates
o

Controller Mahager
Loads, unloads angpfalls updates to contro
s publsi ‘{ >
or ot E

Joint Command Interfaces N
eg

\

Controller:

Contr

e.g. joi troller
Send a wrajectory from Movelt etc

Figure 2.6: ROS Control Plugin for Gazebo with Hardware Interface

Also, if we want to see the LIDAR sensor rays in simulation
in Gazebo, then add a laser plugin in the same URDF by
referencing the “lidar” link. The sensor type is “ray” and set
the parameter “visualize” to “True” if we want to see the
rays in gazebo else “False” to scan objects but keeping the
rays invisible as this plugin requires some computing power.
We can set the number of samples, resolution, minimum
angle, maximum angle, minimum range, maximum range,
noise type and many other properties according to our
required sensor, as this is a custom plugin in ROS.

B 1.4. Laser Assembler:

Laser rangefinder sensors (such the RPlidar A1M8) typically
output a stream of scans, with each scan consisting of a set
of range readings for objects the sensor has identified (in
polar coordinates). To obtain a 3D perspective of the
environment, many robotic systems, including PR2's tilting
laser platform, articulate a laser rangefinder. A larger 3D
Cartesian coordinate (XYZ) point cloud is created by the
nodes in the laser assembler package by listening to streams
of scans. We have interfaced with the laser assembler
package via ROS node:

e laser scan_assembler: Assembles a stream of
sensor_msgs/LaserScan messages into point clouds.

The laser_scan_assembler subscribes to
sensor_msgs/LaserScan messages on the scan topic. The
Projector and Transformer process these scans by projecting
the scan into cartesian space and then transforming it into
the fixed frame. A sensor_msgs/PointCloud is produced as a
result, which can then be put to the rolling buffer. On service
calls, clouds in the rolling buffer.

laser_scan_assembler

Cloud 1

Interval
Cloud 2 / \
Cloud 3
- assem ble_sca ns
. Assembler
Cloud 9

(Service)
tf data »|Transformer Cloud 97
Cloud 98
Cloud 99
Rolling
Buffer

scan | Projector

PointCloud

Figure 2.7: Laser Assembler service node data transfer

“assemble scan” service - An assembler searches its rolling
buffer for clouds that occur within the desired period when it
receives an assemble scan request (begin to end). The larger
cloud created from these smaller ones is then sent to the
caller in the service response in the frame determined by the
fixed frame option. This is a non-blocking process, and if
no scans are received within the requested time frame, an
empty cloud will be returned. As determined by the
laser_geometry::LaserProjection library, the final cloud will
have channels with names like intensities, index, distances,
and stamps.

The Laser Scan Assembler - The laser scan assembler
accumulates laser scans by listening to the appropriate topic
and accumulating messages in a ring buffer of a specific
size. When the assemble_scans service is called, the contents
of the current buffer that fall between two times are
converted into a single cloud and returned. We have
remapped our robot’s scanned topic from ““/robot/scan” to
“/scan” as this assembler searches for “/scan” topic to read
laser scan data. Each single scan is converted into the fixed
frame when it arrives, and no additional transforms are done
to the data when the cloud is published. Therefore, we have
chosen a frame that isn't moving i.e., the “world” frame.

C. Pseudo Code/ Testing

To run any node, before we need to initialize ROS Master.
“roscore” is a collection of nodes and programs that are
pre-requisites of a ROS-based system. We must have a
roscore running in order for ROS nodes to communicate. It
is launched using the “roscore” command.

We have created a “main.launch” file which first launches an
empty world followed by setting arguments such as robot
description, robot URDF file, robot name, robot home
position (x y z). Then in a common group (namespace =
robot_ arm) we first launch the joint state controllers
(robot_control.yaml files) which will publish the joint
variables to “joint_state controllers”. Followed by setting
parameters for robot description to get loaded and synced
with Rviz “RobotModel”. Now, we load our robot arm into
the Gazebo environment with the help of the “gazebo ros”
package by spawning the model into the empty world
created before with the home position arguments described
above. Then to load the joint state variables to respective

joint topics, we load the “spawner” using the
“controller manager” package. @ And finally the
“robot_state publisher” node to publish joint states that can
be utilized by ROS different tools and nodes.

Launching this “main.launch” file using ‘“roslaunch
robot_arm_scanner main.launch” will load the model into
gazebo and set it ready for scanning.

x4+ OUS -~ - Be8

+OUS -~ - MeB|%%Z|hR|R 0|

Figure 3.1: Loaded Robotic Arm URDF model in Gazebo Empty World

The “rostopic list” command lists out all of the active topics
running by ROS Master. Here we can notice the “/scan”
topic published by the sensor, “/joint_states” topic published
by the “robot state publisher”, individual joint state
command topic by “joint state controller”, “/tf” and
“/tf_static” topics of transforms we wrote before.

You can notice that the joint state publisher have four topics
for each joint out of which we are mainly interested in:

1. /command: This is to set/provide the desired
position we want the joint to reach using the
controller interface we defined in the transmission.
Input a position value in radians and the joint will
handle the effort by applying PID values set by us.
(We had tuned the PID values for smoother and
quicker operations).

2. /state: This gives position feedback of the joint at
each instance of time (updates according to joint
state publisher publish rate).

Using these topics we created a script, a node which
subscribes to these nodes as feedback and publishes required
goal positions to respective joint topics and perform the
scanning operation easily.

Irobot_arm
Ielock.
e
- -
=
e — -
= =
- —
e =
felock:
Igazebo_gul

Figure 3.2: Rqt-Graph to visualize communication between all active nodes

Now as the robot is ready to scan the object we need to
visualize the detected laser scan data and assemble them into
point clouds. So, for this we used the Rviz tool which can
help us visualize laser scan and point cloud data together.
We launch Rviz using the “rosrun rviz rviz” command. First
we load the “RobotModel” from the “By Display Type”
option as soon as the Rviz is launched. And then set the
fixed frame to “world” frame as we are performing all statics
transformations w.r.t this frame. Now to visualize the Laser
scan data, we add the “/Scan => Laserscan” topic in the “By
Topic” option inside the “Add” tool. To see any object
detected, insert a block in front of the laser in the gazebo and
then you can see the reflected scanned laser data in the Rviz
interface.

et : copmons. o

Figure 3.3: 3D environment scanning using RPLidar AIM$8

The laser scan data which we get in this step are 2D data
points. So, if we want to scan a 3D object then we need an
additional third axis which can be in the format of 3D point
cloud data. A Point Cloud is a 3D visualization made up of
thousands or even millions of georeferenced points.

Therefore, we had assembled all laserscan data of scanning
operation into a single 3D point cloud using the
“laser_assembler” service provided by ROS. We wrote a
script which collects laser scan data in a time interval
specified with buffer from “/scan” topic (which is remapped
from “lidar” frame to “scan” frame in the launch file before)
and assembles them “PointCloud2” format so that we can
visualize the data messages published on respective point
cloud topic in Rviz. Similar to how we added the
“Laserscan” topic from the “Add” tool, we have to add
“PointCloud2” topic to visualize the object scanned by a
robotic arm in gazebo using a script to control robot joints.

A= R]

Figure 3.4: Simulation of Scanning a Trash-Can model in Rviz/Gazebo

IV. RESULTS AND DISCUSSIONS

On the designed robotic arm - end effector, we apply the 3D
laser scanner that has been simulated. The sensors are used
for a variety of navigational functions, including mapping,
localization, and drivability evaluation. Every time a custom
3D laser scanner is built, there are slight distortions.
However, the system must be aware of its precise alignment
in order to obtain accurate 3d models. Consequently, a
calibration is required. Although discussing this would go
beyond the scope of this essay, you can study publications
on calibration for both spinning 2D and 3D laser scanners.
Additionally, adding color information to the point cloud to
obtain an intensity map of objects describing data at various
surface levels may be valuable for some applications. The
distortion of the 2D laser scans during a continuous rotation
of the 2D laser scanner is another crucial point of which one

should be aware. Combining alignment, the robotic arm's
rotational speed, and the measurement frequency of the 2D
laser scanner may result in a straightforward mathematical
answer.

A rotating 2D laser scanner has several advantages over
currently available ready-to-use 3D laser scanners, including
a lower cost, a larger vertical field of view (FOV), and a
higher vertical resolution achieved by using a lot more
layers (Velodyne HDL-64/Hokuyo UTM-30LX). While 3D
laser scanners that can be purchased use several laser beam
transceivers simultaneously, 2D laserscanners rotate a 1D
laser beam transceiver to produce this amount of layers. The
ready-to-use systems can spin significantly faster with
numerous scans per second by applying multiple distance
measurements at once. A rotating 2D scanner may take
several seconds depending on the horizontal resolution,
however greater update rates are achievable if a lesser
resolution is suitable, for example, for relocalization in a
certain map or viewing a specific region of the world.
Therefore, a system with a spinning 2D laser scanner should
not move throughout the scanning process; otherwise, if
there is no precise robot motion estimation, the resulting 3D
scans are deformed. Therefore, although spinning 2D
scanners are best suited for perception tasks requiring high
precision and measurement density like traversability
evaluation or item recognition, purchasable 3D scanners are
better suited for extremely dynamic scenarios like
metropolitan street scenes. They can be used in the
manufacturing sector to identify flaws, scan items, and
visualize them for analysis.

V. LIMITATIONS

We intend to look at the impact of odometry inaccuracies for
short-range robot motion. Being a robotic arm, it has some
restrictions regarding vibrational and translational
inaccuracies while attempting to span intricate curves in
three-dimensional space. We are therefore developing a
smooth transition method for motion using appropriate PID
adjusted settings as well as a mechanical damping factor to
prevent overshoot at high speeds in order to avoid this issue.
Another drawback that requires additional study is how the
sensor's nodding tendency interacts with dynamic
obstructions.

VI. FuTurRE ScoprE

The laser scan data that is currently combined into 3D point
clouds using the laser assembler ROS service only offers
point clouds on a topic rather than producing an STL model
of it. In order to stay within the scope of this project, we will
develop an application that can generate 3D CAD models as
well, support a variety of CAD file formats and be coupled
with meshing tools like Meshlab.

VII. CONCLUSION

The primary goal of this project is to create a low-cost 2D

LiDAR-based 3D object scanning system. The proposed
system could successfully execute a 2D and 3D scan, hence
the goal was accomplished by producing 3D point clouds
from 2D laser scan data. But there are lots of areas where the
system could be strengthened for use in the future. For
instance, a better robotic arm might be used to speed up the
scan and decrease vibration during the scanning test in order
to decrease noisy data and boost scanning speed,
respectively. The success of this research demonstrates the
dependability and precision of a cheap LiDAR sensor for
doing an object 3D scan. This experiment demonstrates the
enormous potential of inexpensive LiDAR sensors for
additional robotic applications, specifically for the visual
system.

VIIL

This work was supported by the Research and
Development Team at the Kalyani Strategic Management
Services by Kalyani Group, Pune, India.

ACKNOWLEDGMENT

IX. REFERENCES

[11 A. Hornung, M. Phillips, E. Gil Jones, M. Bennewitz,
M. Likhachev, and S. Chitta, ‘“Navigation in
three-dimensional cluttered environments for mobile
manipulation,” in 2012 IEEE International Conference
on Robotics and Automation, pp. 423429, Saint Paul,
MN, USA, May 2012. [Google Scholar

[2] M. Schadler, J. Stiickler, and S. Behnke, “Rough terrain
3D mapping and navigation using a continuously
rotating 2D laser scanner,” KI - Kiinstliche Intelligenz,
vol. 28, No. 2, pp. 93-99, 2014. [Google Scholar

[3] R. Zlot and M. Bosse, “Efficient large-scale
three-dimensional mobile mapping for underground
mines,” Journal of Field Robotics, vol. 31, no. 5, pp.
758-779, 2014. [Google Scholar

[4] S. Vidas, P. Moghadam, and M. Bosse, “3D thermal
mapping of building interiors using an RGB-D and
thermal camera,” in 2013 IEEE International
Conference on Robotics and Automation, pp.
2311-2318, Karlsruhe, Germany, May 2013. [Google
Scholar]

[5] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox,
“RGB-D mapping: using Kinect-style depth cameras for
dense 3D modeling of indoor environments,” The
International Journal of Robotics Research, vol. 31, no.
5, pp. 647-663, 2012. [Google Scholar

[6] F. Pomerleau, F. Colas, and R. Siegwart, “A review of
point cloud registration algorithms for mobile robotics,”
Foundations and Trends in Robotics, vol. 4, no. 1, pp.
1-104, 2015. [Google Scholar

[7] J. L. Martinez, J. Morales, A. J. Reina, A. Mandow, A.
Pequefio-Boter, and A. Garcia-Cerezo, “Construction
and calibration of a low-cost 3D laser scanner with 360°
field of view for mobile robots,” in 2015 IEEE
International Conference on Industrial Technology

(ICIT), pp. 149-154, Seville, Spain, March 2015.
Google Scholar

[8] J. Morales, J. Martinez, A. Mandow, A. Reina, A.
Pequeno-Boter, and A. Garcia-Cerezo, “Boresight
calibration of construction misalignments for 3D
scanners built with a 2D laser rangefinder rotating on its
optical center,” Sensors, vol. 14, no. 11, pp.
20025-20040, 2014. [Google Scholar]

[9] H. Surmann, A. NTuchter, and J. Hertzberg. An
autonomous mobile robot with a 3d laser range finder
for 3d exploration and digitalization of indoor
environments. Robotics and Autonomous Systems,
2003

[10] Katsumi Kimoto et al., “Development of small size 3D
LIDAR,” in: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 2014.

[11]J. S. David Droeschel and S. Behnke, “Local
multi-resolution representation for 6D motion
estimation and mapping with a continuously rotating 3D
laser scanner,” in: Proceedings of the IEEE International
Conference on Robotics and Automation, ICRA, 2014.

[12]1D. Van der Zande et al., “Influence of measurement
set-up of ground based LIDAR for derivation of tree
structure,” Agricultural and Forest Meteorology,
Elsevier, vol. 141, no. 2, pp. 147-160, 2006.

[13]J. R. Rosell et al., “Obtaining the three-dimensional
structure of tree orchards from remote 2D terrestrial
LIDAR scanning,” Agricultural and Forest
Meteorology, Elsevier, no. 149, pp. 1505-1515, 2009.

[14]U. Weiss, and P. Biber, “Plant detection and mapping
for agricultural robots using a 3D LIDAR sensor,”
Robotics and Autonomous Systems, no. 59, pp.
265-273, 2011.

[15]H. M. Biruk A. Gebre and K. Pochiraju, “Remotely
operated and autonomous mapping system (ROAMS),”
in: Proceedings of IEEE International Conference on
Technologies for Practical Robot Applications, TePRA,
20009.

[16]R. Sheh et al., “A low-cost, compact, lightweight 3D
range sensor,” in: Proceedings of Australian Conference
on Robotics and Automation, Auckland, New Zealand,
2006.

[17]]J. Morales et al., “Design and development of a fast and
precise low-cost 3D laser rangefinder,” in: Proceedings
of IEEE International Conference on Mechatronics
(ICM), 2011.

[18]R. Sheh et al, “A 3D laser scanner system for
autonomous vehicle navigation,” in: Proceedings of
International Conference on Advanced Robotics, ICAR,
20009.

https://scholar.google.com/scholar_lookup?title=Navigation%20in%20three-dimensional%20cluttered%20environments%20for%20mobile%20manipulation&author=A.%20Hornung&author=M.%20Phillips&author=E.%20Gil%20Jones&author=M.%20Bennewitz&author=M.%20Likhachev&author=S.%20Chitta
https://scholar.google.com/scholar_lookup?title=Rough%20terrain%203D%20mapping%20and%20navigation%20using%20a%20continuously%20rotating%202D%20laser%20scanner&author=M.%20Schadler&author=J.%20St%C3%BCckler&author=S.%20Behnke&publication_year=2014
https://scholar.google.com/scholar_lookup?title=Efficient%20large-scale%20three-dimensional%20mobile%20mapping%20for%20underground%20mines&author=R.%20Zlot&author=M.%20Bosse&publication_year=2014
https://scholar.google.com/scholar_lookup?title=3D%20thermal%20mapping%20of%20building%20interiors%20using%20an%20RGB-D%20and%20thermal%20camera&author=S.%20Vidas&author=P.%20Moghadam&author=M.%20Bosse
https://scholar.google.com/scholar_lookup?title=3D%20thermal%20mapping%20of%20building%20interiors%20using%20an%20RGB-D%20and%20thermal%20camera&author=S.%20Vidas&author=P.%20Moghadam&author=M.%20Bosse
https://scholar.google.com/scholar_lookup?title=RGB-D%20mapping%3A%20using%20Kinect-style%20depth%20cameras%20for%20dense%203D%20modeling%20of%20indoor%20environments&author=P.%20Henry&author=M.%20Krainin&author=E.%20Herbst&author=X.%20Ren&author=D.%20Fox&publication_year=2012
https://scholar.google.com/scholar_lookup?title=A%20review%20of%20point%20cloud%20registration%20algorithms%20for%20mobile%20robotics&author=F.%20Pomerleau&author=F.%20Colas&author=R.%20Siegwart&publication_year=2015
https://scholar.google.com/scholar_lookup?title=Construction%20and%20calibration%20of%20a%20low-cost%203D%20laser%20scanner%20with%20360%C2%B0%20field%20of%20view%20for%20mobile%20robots&author=J.%20L.%20Mart%C3%ADnez&author=J.%20Morales&author=A.%20J.%20Reina&author=A.%20Mandow&author=A.%20Peque%C3%B1o-Boter&author=A.%20Garc%C3%ADa-Cerezo
https://scholar.google.com/scholar_lookup?title=Boresight%20calibration%20of%20construction%20misalignments%20for%203D%20scanners%20built%20with%20a%202D%20laser%20rangefinder%20rotating%20on%20its%20optical%20center&author=J.%20Morales&author=J.%20Mart%C3%ADnez&author=A.%20Mandow&author=A.%20Reina&author=A.%20Peque%C3%B1o-Boter&author=A.%20Garc%C3%ADa-Cerezo&publication_year=2014

	Generating 3D Point Cloud Data using 2D LiDAR Sensor with ROS
	I.​INTRODUCTION
	II.​LITERATURE REVIEW
	III.​METHODOLOGY/EXPERIMENTAL
	A.​Components/Flowchart
	B.​Synthesis/Algorithm/Design/Method
	C.​Pseudo Code/ Testing

	IV.​RESULTS AND DISCUSSIONS
	V.​LIMITATIONS
	VI.​FUTURE SCOPE
	VII.​CONCLUSION
	VIII.​ACKNOWLEDGMENT
	IX.​REFERENCES

