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Abstract

The objective of this research is to significantly enhance the grasping ca-
pabilities of the two-finger gripper robotic arm (such as the UR5 arm) by
leveraging a combination of learning and analytical-based algorithms. The
focus is on enabling the arm to effectively grasp and manipulate unknown ob-
jects with minimal prior knowledge or specific object information. To achieve
this, three key algorithms are employed: GrapsNet, Height Assistive Feature
(HAF), and Elliptical Centroid Grasp (ECG).

Introduction

• GraspNet: GrapsNet is a learning-based algorithm that aims to im-
prove the arm’s grasping performance by leveraging large-scale data.
By training on a diverse set of grasping examples, GrapsNet learns to
generalize and adapt its grasping strategies to different object shapes,
sizes, and orientations. This algorithm enables the UR5 to grasp ob-
jects that were previously unknown to the system, thereby enhancing
its ability to handle a wide range of objects autonomously.

• Height Assistive Feature (HAF): The Height Assistive Feature
(HAF) algorithm plays a crucial role in improving the arm’s grasping
precision. It utilizes depth-sensing techniques to estimate the height of
an object and provide feedback to the arm’s control system. By incor-
porating this feature, the UR5 can adjust its gripping strategy based
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on the object’s height, ensuring a secure and stable grasp. This assists
in mitigating potential issues such as slippage or dropping objects due
to incorrect grip force or inadequate finger placement.

• Elliptical Centroid Grasp (ECG): The Elliptical Centroid Grasp
(ECG) algorithm combines the analytical approach with the benefits
of GraspNet and HAF. ECG starts by segmenting the object from the
scene and then estimates the grasp poses. It achieves this by con-
structing an approximate ellipse around the segmented object and uti-
lizing the center and angle of the minor axis as the position and ori-
entation of the gripper.ECG demonstrates high accuracy when dealing
with common objects such as cuboids and cylinders. However, it may
encounter challenges when applied to complex objects that possess in-
tricate shapes or characteristics. Despite this limitation, ECG offers
a valuable grasp estimation technique that leverages the strengths of
existing methods to provide reliable results.

• Grasp Pose Detection (GPD): Grasp Pose Detection is an algo-
rithm that uses point cloud data to estimate grasp poses. We employed
the integrated version of Grasp Pose Detection (GPD) with MoveIt
Task Constructor to gain fine-grained control over the arm’s planning
process until the grasp pose is achieved. This integration holds signifi-
cant value, especially in industrial settings and factories where precise
estimation and planning play a vital role.The combined power of GPD
and MoveIt Task Constructor enhances the overall efficiency and accu-
racy of grasp pose detection, making it a valuable solution for various
applications that require precise manipulation.

• Point Cloud Grasp (PCD): Point Cloud Grasp is a crucial algo-
rithm utilized in this research project. Its primary objective is to effi-
ciently segment the point cloud data acquired from sensors, extracting
meaningful representations of objects. This algorithm employs surface
normals in proximity to the centroid of the object’s point cloud to es-
timate grasp candidates. However, it is important to note that this
algorithm is currently undergoing research and development. There
are still additional steps to be taken before it can accurately estimate
the optimal grasp poses based on various factors.
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Overall, this research aims to advance robotic manipulation systems by
empowering robotic arms to autonomously pick and handle a wide vari-
ety of unknown objects using a two-finger gripper. By the capabilities of
GrapsNet, HAF, and Point Cloud Grasp, the arm becomes more adapt-
able, robust, and efficient in its grasping operations. This research con-
tributes to the realization of versatile and autonomous robotic agents
capable of interacting effectively with real-world environments and ob-
jects.

Completion status (with brief details of work)

We have successfully implemented four different algorithms, namely Grasp-
Net, Height Assisted Feature (HAF), Elliptical Centroid Grasp (ECG), and
Grasp Pose Detection (GPD). These algorithms differ in terms of their com-
putation, architecture, and methodology, showcasing the diversity of ap-
proaches we have implemented.

Also, we have created a quality metrics for the GraspNet, HAF and ECG to
measure some properties such as accuracy, computational resources, planning
time, precision, stability, success rate, etc.

We have created a grasping pipeline for such algorithms in ROS which en-
ables developer to execute required algorithm in one flow. This pipeline has
a config file which user needs to update as per it’s hardware and file structure
setup and utilise this package to execute different services available such as
initialise robot arm for capturing data, planning grasp poses based on best
planning time, execute grasping using moveit commander, etc.

Research

At the outset of our exploration into grasping algorithms, we conducted thor-
ough research on various open-source packages. Our initial list included 8
algorithms that were meticulously coded and accompanied by comprehensive
documentation. These algorithms are as follows:

• GraspNet

• Height Assisted Feature (HAF)

• Elliptical Centroid Grasp (Developed)
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• Grasp Pose Detection (GPD)

• Dexnet

• GraspIt

• PointNetGPD

• Antipodal Grasp Identification and Learning (AGILE)

Out of the aforementioned list, we successfully installed 6 out of 8
grasping algorithms with relative ease. Below is a table that provides a
comparison of the 6 algorithms based on specific features.

Table 1.1: Comparison of Grasping Algorithms
Algorithms GraspNet Dexnet HAF GraspIt GPD ECG

Type Learning Learning Analytical Analytical Analytical Analytical

Input RGB-D
Image

3D-Meshs Pointcloud 3D-Meshs Pointcloud RGB-D
Image

Architecture Deep
Neural
Network

Deep
Neural
Network

Height In-
formation

Friction
Cones

Friction
Cones

Math For-
mulations

Final Grasp Network
extracts
features

Samples
grasps

Constructs
height map

Collision
Detection

Force Clo-
sure

Center and
Minor Axis

Stability Does not
ensure

Does not
ensure

Does not
ensure

By force
closure

By con-
tact
points
analysis

Grasp
around ob-
ject center

Pros Eliminates
need for
mesh

Predicts
grasp
qualities

Incorporates
Depth
Cues

Friction
Cone
analysis
for stabil-
ity

Generalize
to novel
objects

Easy to im-
plement

Cons Relies on
dataset

Requires
large
dataset

Struggle
with
complex
objects

Fails
with de-
formable
objects

Acucurate
depth
sensing

Not de-
tailed
approach

However, when it came to selecting algorithms for implementation, we de-
cided to focus on four specific ones: GraspNet, Height Assisted Feature
(HAF), Elliptical Centroid Grasp (ECG), and Grasp Pose Detec-
tion (GPD). These four algorithms showed promising results and aligned
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well with our project goals. On the other hand, the remaining two algorithms
presented significant challenges during integration, which led us to exclude
them from our final selection.

Reasons for Discarding the other 4 Algorithms

• Dexnet: (Installed Successfully, Issues while Integration)
Dexnet is designed to operate with known objects, requiring the model
to be trained on our specific object dataset to accurately estimate grasp
poses. Since our focus is on evaluating the quality of grasping algo-
rithms of unknown objects, Dexnet is not suitable for our purposes
and is therefore excluded from our evaluation.

• GraspIt: (Installed Successfully, Issues while Integration)
GraspIt offers a simulator that takes robot hand and object meshes as
input to estimate the grasp pose. However, when it comes to running
the algorithm seamlessly from input object to executing the plan with
the robot arm, it becomes challenging with GraspIt. This difficulty in
achieving an end-to-end execution is one of the reasons why we decided
to exclude GraspIt rom our evaluation.

• PointNetGPD: (Issues while Installing)
PointnetGPD utilizes the PointNet architecture, a neural network, to
estimate grasp poses. However, there are no pre-trained models avail-
able, which meant that we had to train the algorithm ourselves. This
training process was time-consuming, especially when considering the
integration with the MoveIt planning framework. As a result, we de-
cided to exclude PointnetGPD rom our evaluation.

• AGILE (Antipodal Grasp Identification and Learning): (Issues
while Installing)
AGILE presented significant challenges during the package installation
process. We encountered several dependency mismatches, and resolv-
ing them resulted in conflicts with other packages that were functioning
correctly. Despite our numerous attempts, we were unable to overcome
these issues. As a result, we made the decision to exclude AGILE from
our evaluation.
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Selected Algorithms and Descriptions

Given Below is the Detailed Description of Each Selected Algorithm

• Algorithm: GraspNet

– Type: Learning based.

– Architecture: It employs a deep neural network, such as a (CNN)
or a combination of CNN and (RNN), for grasp pose estimation.

– Description: The network learns to extract relevant features
from the image and maps them to grasp poses in the 3D space.
The network is trained on a large dataset of annotated grasps,
where the ground truth includes the 3D position and orientation
of successful grasps.

– Input Data Required: RGB and Depth Image.

– Output Received: The output of the network is a set of pre-
dicted grasp poses represented by their 3D positions and orien-
tations. It provides with top 50 grasp pose with score based on
grasp evaluation by itself.

– Stability of Grasping: Does not ensure the stability of the
grasp, just estimates grasp poses.

– Gripper Dependency: Designed to be agnostic to the type of
gripper.

– Pros:

∗ It can estimate grasp poses directly from RGB-D images,
eliminating the need for explicit 3D models of objects.

∗ It can generalize well to novel objects and scenarios due to its
learning-based approach.

∗ It can be used for assistive applications to pick unknown ob-
jects with complex geometries and orientations.

– Cons:

∗ It’s performance heavily relies on the quality and diversity of
the training dataset.

∗ It may struggle with object occlusions, cluttered scenes, or
cases where the visual appearance of the object is not distinct.

• Algorithm: Height Assistive Feature (HAF)
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– Type: Analytical based.

– Architecture: Analytical approach to incorporate depth cues
and geometric characteristics of the object from the image.

– Description: Accumulates the height information from the depth
data, constructs a height map. The pre-processed point cloud is
used to extract visual features (object’s appearance, texture, and
shape). Both are fused and allows the algorithm to incorporate
depth cues and geometric characteristics of the object defining the
position vector and orientation for grasp.

– Input Data Required: Point Cloud Data file format (PCD file).

– Output Received: The final output is the estimated grasp pose,
including the grasp position (grasping direction vector) and the
orientation of the gripper relative to the object.

– Stability of Grasping: Doesn’t ensure stability, instead esti-
mates grasp poses.

– Gripper Dependency: Designed to be adaptable to different
gripper sizes.

– Pros:

∗ It does not rely on machine learning or training data, making
it computationally efficient and adaptable to various objects.

∗ It can provide reasonable grasp pose estimations even in clut-
tered or unknown environments.

– Cons:

∗ It may struggle with objects that have complex or irregular
shapes where geometric features are not well-defined.

∗ It may not generalise well for all different applications as this
is restricted towards top down approach (Camera facing down
towards the object).

• Algorithm: Elliptical Centroid Grasp (ECG)

– Type: Analytical based.

– Architecture: It estimates the pose and orientation by consider-
ing the centroid and angle of minor axis from an ellipse constructed
surrounding the object.

– Description: The segmentation process involves examining the
double derivative of pixels, enabling the identification of object
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boundaries. The contour construction technique is then employed
to estimate an ellipse that encloses the segmented object.

– Input Data Required: RGB and Depth Camera Message

– Output Received: Filtered grasp pose representing the transla-
tion and orientation for the gripper to grasp object.

– Stability of Grasping: Stability of the grasp is ensured by con-
sidering factors such as the object’s mass distribution, center of
gravity, and the gripper’s design.

– Gripper Dependency: Designed to be adaptable to different
gripper sizes.

– Pros:

∗ Lesser planning time and computational resource to operate.

∗ Can be used for industrial pick and place applications with
simpler objects for better reliability.

– Cons:

∗ It may misbehave for complex geometries with unstructured
spline surfaces.

Camera Configuration

We planned to implement two different camera configurations, eye-on-hand
(EOH) and eye-to-hand (ETH), to test our grasping algorithm.

• Eye-on-Hand (EOH):
Eye-in-hand configuration is the most common camera configuration for
manipulation tasks. In this configuration, the camera is mounted on
the end-effector of the robotic arm, so it moves along with the gripper.
This gives the robot a close-up and detailed view of the objects being
grasped, which allows for better hand-eye coordination, precise posi-
tioning, and feedback-based control during grasping tasks. We tested
GraspNet, HAF, and ECG algorithms with this configuration.

• Eye-to-Hand (ETH):
Eye-to-hand configuration involves positioning the camera separately
from the robotic arm, typically fixed in a static location within the
workspace. It captures the scene from a stationary viewpoint while the
robotic arm performs grasping tasks. This configuration is commonly
used in situations where the camera’s position remains constant, and
the robot needs to perceive and localize objects in the environment
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relative to the fixed camera. We tested ECG, GPD algorithms with
this configuration.

It is important to note that, when testing the HAF algorithm, we had to
configure the robotic arm’s home position so that the camera was point-
ing directly downwards. This is because the HAF algorithm only works
on heights, and it needs to be able to see the object from above in order to
calculate the best grasp (refer Demo page ).

Custom Grasping Algorithm

After experimenting with various Grasping Algorithms, we had this idea
of using Poincloud library to come up with a very efficient and intuitive
Grasping Approach, thats where we came up with Pointcloud Grasp (pcd-
grasp).

Algorithm: Pointcloud Grasp (pcd-grasp):

• Type: Analytical based.

• Architecture: It estimates the pose and orientation by considering
surface normals of the segmented object from the scene, that are close
to the object’s centroid

• Description: The objects are initially segmented using Euclidean clus-
tering with the assistance of a K-D Tree. An oriented bounding box is
then estimated around each segmented object. The grasp candidates
are determined by considering the surface normals in proximity to the
centroid of the object’s point cloud.

• Input Data Required: Pointcloud Data from Camera

• Output Received: Raw grasp candidates

• Gripper Dependency: Designed to be work with parallel-jaw grip-
pers

Please note that this algorithm is currently undergoing research and devel-
opment, and it is not yet fully optimized for accurate grasp estimation.
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(a) Surface Normals (b) Grasp Candidates

Quality Metrics

We conducted extensive experiments using different novel objects to eval-
uate the performance of the three algorithms (GraspNet, HAF, ECG). In
addition to the existing grasp quality metrics, we developed our own set of
metrics after reviewing the work of Máximo A. Roa and Raúl Suárez (2015)
and Kim, Iwamoto, Kuffner, Ota, and Pollard (2011). Our metrics are intu-
itive and straightforward, and they are designed to assess the grasping results
in a way that is both meaningful and informative.

The Features of the Quality Metrics are:

• Success Rate: (Score: 0/1) Success in Grasping

• Precision: (Score: 0-1) Gripper Close to estimated Grasp Location

• Accuracy: (Score: 0-1) Minimal Deviation between shown Grasp and
Actual

• Planning Time: (Time in minutes) Time taken by the Algorithm to
estimate Grasp Pose

• Computational Resources: (0.1/0.5/1) Processing Power of the Al-
gorithm

• Stable: Stability of the Grasp

• Secure: Secure and Stiff Grasp
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1.1. HARDWARE PARTS

Chart1.1: Grasping Algorithm Quality Metrics

1.1 Hardware parts

• List of hardware

– Universal Robotic 5 Arm (UR5 Arm Kit including power supply
and Ethernet cable for communication)

– OnRobot - RG2 - Flexible Gripper (2kg Payload)

– Intel D435i RealSense Depth Camera (including C-type cable)

• Detail of each hardware

– UR5: The Universal Robots UR5, is a highly flexible robotic arm
that enables safe automation of repetitive, risky tasks. With a
carrying capacity of 5 KG and a radius of 850 mm, it is the perfect
cobot for performing light tasks such as packing, assembly, or
testing.

Here is the technical specification and other details of the arm:
UR5 Technical Specification

– OnRobot Gripper: The RG2 - 2kg payload robot arm gripper is
a flexible collaborative gripper with a built-in Quick Changer up
to 110mm stroke. It provides intelligence, fast deployment, easy
customization, and programming.

Here is the data-sheet of the OnRobot RG2 Gripper: OnRobot
RG2 Gripper data-sheet

– RealSense Camera: The Intel RealSense D435i places an IMU into
our cutting-edge stereo depth camera. With an Intel module and
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1.2. SOFTWARE USED

vision processor in a small form factor, the D435i is a powerful
complete package that can be paired with customized software for
a depth camera capable of understanding its own movement.

Here is the data-sheet of the RealSense Camera: Intel RealSense
D400-Series data-sheet

1.2 Software used

For the implementation of our grasping algorithms, we employed a range
of technology stacks. Specifically, we utilized the Ubuntu 20.04 operating
system as the platform to run and test our algorithms in conjunction with
the hardware components.

• Robot Operating System (ROS) Noetic : ROS Noetic
We used the ROS Framework to to validate our grasping algorithms,
grasp planning scripts, and control the UR5 hardware arm.

• Pointcloud Library (PCL): PCL
PCL played a pivotal role in our project, serving as a versatile tool for
point cloud visualization, preprocessing, and the development of our
custom grasping algorithm.

• OpenCV: OpenCV
OpenCV played a tremendous role while using ECG to estimate Grasp
Poses, it also stays as a prerequisite to other grasping algorithms. In
this project, we builded it from source to avoid any version conflicts.

• Intel Realsense: Realsense SDK; Realsense ROS Wrapper
The Intel Realsense d435i Depth Camera was utilized as an input in-
terface for our grasping algorithms. It allowed us to capture RGB,
depth, and point cloud information of the environment, which served
as crucial inputs for estimating grasp poses

It’s important to note that there are additional software applications that
contributed to the this project, although they were not mentioned above
due to their automatic installation or being prerequisites for the mentioned
tools. For instance, Gazebo, a powerful physics engine, and RViz, a robot
visualization tool, are automatically installed when ROS is installed, and
they played integral roles in our project’s development and simulation.
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1.3. SOFTWARE AND CODE

1.3 Software and Code

GitHub served as our platform for source code sharing and collaborative con-
tribution. Link for the repository of code.

Here is a concise overview of all the branches available in the repository:

• ’main’ branch: This branch serves as a summary and provides an
overview of the entire project.

• ’haf pipeline’ branch: The code to implement the HAF pipeline is
located in this branch, organized into three bash scripts.

• ’graspnet pipeline’ branch: The code to implement the Graspnet
pipeline is located in this branch, organized into ROS service calls.

• ’ecg pipeline’ branch: This branch includes all the essential files
and scripts required to run ECG with simulation setup.

• ’pcd grasp’ branch: The code to implement the Pointcloud Grasp
Algorithm , which works with PCD files, is located in this branch.

• ’grasp sim’ branch: This branch includes all the essential files and
scripts required to launch the simulation of the UR5 arm in Gazebo
and visualize the sensors and motion planning using RViz.

1.4 Demo

1) Height Assisted Feature (HAF) Hardware Setup

(a) HAF Grasp Estimate (b) UR5 Hardware Setup for HAF
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1.4. DEMO

2) GraspNet Hardware Setup

(a) Graspnet Grasp Estimate (b) UR5 Hardware Setup for Graspnet

3) ECG Simulation Setup

(a) ECG Grasp Estimate (b) UR5 Simulation Setup for ECG

4) GPD Simulation Setup

(a) GPD Grasp Estimate (b) UR5 Simulation Pick for GPD
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1.5. FUTURE WORK

Demonstration Video
We have documented our grasping experiments for all four algorithms and
uploaded them to YouTube for reference. Playlist Link of demonstration
video

1.5 Future Work

• Explore computationally efficient and accurate learning-based and an-
alytical algorithms beyond our current implementations.

• Conduct extensive experiments in cluttered scene and factory settings
to evaluate the performance of these algorithms.

• Develop a flexible pipeline or framework that integrates the most ef-
fective algorithms based on our quality metrics and can accommodate
future algorithms and techniques, ensuring continuous improvement of
the solution.

1.6 Bug report and Challenges

• Orientation Issue: A considerable portion of our time was devoted
to resolving the disparity in orientation introduced by GraspNet and
integrating it into our motion planning framework, MoveIt. The camera
orientation employed by GraspNet differed from that of the UR5 robot,
necessitating our attention to rectify this mismatch. To address this
issue, we incorporated supplementary transforms to accommodate the
orientation variation. By implementing these transforms, we were able
to effectively convert between the two coordinate frames, leading to
improved grasp accuracy and dependability.

• Version Conflicts: During the installation process of the required
packages for the grasping algorithms, we encountered multiple chal-
lenges and encountered version conflicts along the way.We unknowingly
deleted certain packages while installing GraspIt, such as yaml loader
(ruamel), meshpy, and scipy, which were necessary for GraspNet. We
spent time manually fixing the issue.

• Weird Motion Planning: We encountered a challenge with the
motion planner in MoveIt, as it initially produced unexpected and un-
conventional plans. It required considerable effort and time to gain
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1.6. BUG REPORT AND CHALLENGES

control over the planner and introduce constraints to restrict its mo-
tions to meet our requirements.

• Ideal Environment Setup: Achieving accurate grasp estimates
and planning required our hardware setup to be carefully configured.
In some instances, we had to rely on having a proper base plane for
the objects to ensure reliable grasp pose estimation. This ensured that
our grasp planning algorithms could work optimally and deliver precise
results.

• MoveIt-Grasps: Within the MoveIt Framework, there is a valuable
package known as Moveit-Grasps that serves the purpose of estimating
grasps and determining optimal waypoints to reach them. Unfortu-
nately, we faced challenges when it came to installing these packages
and establishing a connection with the UR5 robot. The documenta-
tion proved to be confusing, specifically concerning the compatibility of
ROS versions. While certain packages were accessible on the Melodic
distribution, others were exclusively available on the Noetic distribu-
tion.

• Pre-trained models: At times, we faced difficulties in determin-
ing the correct location to obtain pretrained models. This challenge
was particularly prominent during the installation of Dex-Net, as it
required extensive effort to locate and download the appropriate pre-
trained models. Additionally, when working with PointnetGPD, we
encountered a lack of available pretrained models. Consequently, our
only option was to train the model ourselves, which proved to be chal-
lenging due to time constraints.
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